Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function

  • 343 Accesses

  • 116 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bernstein, I. N., Gelfand, I. M., Gelfand, S. I.: Differential operators on the base affine space and a study ofg-modules, Lie groups and their representation. Summer School of Bolyai János Math. Soc., I. M. Gelfand, ed., pp. 21–64. New York: Halsted Press 1975

  2. 2.

    Borel, A., Tits, J.: Compléments a l'article “Groupes Reductifs”. Publ. Math. I.H.E.S.41, 253–276 (1972)

  3. 3.

    Bourbaki, N.: Groupes et Algebres de Lie. Chapitre 4, 5 et 6. Paris: Hermann 1968

  4. 4.

    Rota, G. C.: On the foundations of combinatorial theory; I. Theory of Mobius functions. Z. Wahrscheinlichkeitstheorie verw. Gebiete Vol.2, 340–368 (1964)

  5. 5.

    Steinberg, R.: Lecture notes on Chevalley groups, mimeographed notes. Yale University, 1967

  6. 6.

    Verma, D.-N.: Möbius inversion for the Bruhat ordering on a Weyl group. Ann. scient. Éc. Norm. Sup., 393–399 (1971)

  7. 7.

    Verma, D.-N.: A strengthening of the exchange condition property for Coxeter groups. Preprint 1972

Download references

Author information

Additional information

Supported in part by NSF grant MPS 72-05055 A03 and Tata Institute, Bombay

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deodhar, V.V. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function. Invent Math 39, 187–198 (1977). https://doi.org/10.1007/BF01390109

Download citation

Keywords

  • Coxeter Group