Inventiones mathematicae

, Volume 57, Issue 2, pp 119–182 | Cite as

Automorphic forms on covering groups ofGL(2)

  • Yuval Z. Flicker
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 0.
    Deligne, P.: Sommes de Gauss cubiques et revêtements deSL(2) (d'après S.J. Patterson). Sém. Bourbaki, Juin 1979Google Scholar
  2. 1.
    Gelbart, S.: Weil's Representation and the Spectrum of the Metapletic Group. Springer Lecture Notes 530, 1976Google Scholar
  3. 2.
    Gelbart, S., Jacquet, H.: Forms ofGL(2) from the analytic point of view. Proc. Symp. Pure Math.33, 1979Google Scholar
  4. 3.
    Gelbart, S., Piatetski-Shapiro, I.: Distinguished representations and modular forms of halfintegral weight. preprintGoogle Scholar
  5. 4.
    Gelbart, S., Piatetski-Shapiro, I.: On Shimura's correspondence for modular forms of halfintegral weight. Proc. Int. Coll. Auto. Forms. Rep. Theory and Arith., Bombay 1980Google Scholar
  6. 5.
    Harish-Chandra: Harmonic analysis on reductivep-adic groups. Springer Lecture Notes 162, 1970Google Scholar
  7. 6.
    Harish-Chandra: Harmonic analysis on reductivep-adic groups. Proc. Symp. Pure Math.26, 167–192 (1973)Google Scholar
  8. 7.
    Jacquet, H., Langlands, R.P.: Automorphic forms onGL(2). Springer Lecture Notes 114, 1970Google Scholar
  9. 8.
    Kubota, T.: Automorphic functions and the reciprocity law in a number field, mimeographed notes. Kyoto Univ. 1969Google Scholar
  10. 9.
    Langlands, R.P.: Base change forGL(2), preprint, Inst. Advanced Study 1975Google Scholar
  11. 10.
    Labesse, J.P., Langlands, R.P.:L-indistinguishability forSL(2) Can. J. Math.31, 726–785 (1979)Google Scholar
  12. 11.
    Moore, C.: Group extensions ofp-adic linear groups. Publ. Math. I.H.E.S.35, 157–222 (1968)Google Scholar
  13. 12.
    Rallis, S., Schiffmann: Représentations supercuspidales du groupe métaplectique. J. Math. Kyoto Univ.,17, 567–603 (1977)Google Scholar
  14. 13.
    Serre, J-P., Stark, H.: Modular forms of weight 1/2. Springer Lecture Notes 627, 29–67 (1977)Google Scholar
  15. 14.
    Shimura, G.: On modular forms of half-integral weight. Ann. Math.97, 440–481 (1973)Google Scholar
  16. 15.
    Shintani, T.: On construction of holomorphic cusp forms of half-integral weight. Nagoya Math. J.,58, 83–126 (1975)Google Scholar
  17. 16.
    Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math.,111, 143–211 (1964)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Yuval Z. Flicker
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations