Inventiones mathematicae

, Volume 61, Issue 3, pp 227–249

Combinatorial hodge theory and signature operator

  • Nicolae Teleman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F., Singer, I.M.: The index of Elliptic Operators, Part III, Annals of Mathematics87, 546–604 (1968)Google Scholar
  2. 2.
    Cheeger, J.: On the Hodge Theory of Riemannian Pseudomanifolds, Proceedings of Symposia in Pure Mathematics, 36, pp. 91–146 Providence: A.M.S. 1980Google Scholar
  3. 3.
    Godement, R.: Topologie Algébrique et Theorie des Faisceaus. Paris: Hermann 1958Google Scholar
  4. 4.
    Grisvard, P.: Espaces Intermediaires entre Espaces de Sobolev avec poids, Annali Scuola Normale Superiore di Pisa17, 255–296 (1963)Google Scholar
  5. 5.
    Hörmander, L.L 2-Estimates and Existence Theorems for the\(\bar \delta \)-operator. Acta Mathematics113, 89–152 (1965)Google Scholar
  6. 6.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables, Amsterdam: North-Holland 1973Google Scholar
  7. 7.
    Kohn, J.J.: Harmonic Integrals on Strongly Pseudo-Convex Manifolds, Part I, Annals of Mathematics78, 113–148 (1963)Google Scholar
  8. 8.
    Singer, I.M.: Future Extensions of Index Theory and Elliptic Operators, in Prospects in Mathematics, Annals of Mathematics Studies, 70, pp. 171–185 Princeton, NJ.: Princeton University Press 1971Google Scholar
  9. 9.
    Stein, E.: Singular Integrals and Differentiability Properties of Functions, Princeton, NJ.: Princeton University Press 1970Google Scholar
  10. 10.
    Sullivan, D.: Differential Forms and the Topology of Manifolds, Proceedings Tokyo Conference on Manifolds, Tokyo: Univesity of Tokyo Press 1973Google Scholar
  11. 11.
    Telemen, N.: Global Analysis onPL-Manifolds. Transactions American Methematical Society256, 49–88 (1979)Google Scholar
  12. 12.
    Teleman, N.: Combinatorial Hodge Theory and Signature Theorem, Proceedings of Symposia in Pure Mathematics, 36, pp. 287–292. Providence: A.M.S. 1980Google Scholar
  13. 13.
    Thom, R.: Les Classes Caractéristiques de Pontrjagin des Variétés Triangulées, Symposium Internacional de Topologia Algebraica, pp. 54–67, Mexico City: UNESCO 1958Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Nicolae Teleman
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations