Inventiones mathematicae

, Volume 56, Issue 3, pp 251–268 | Cite as

A class ofC*-algebras and topological Markov chains

  • Joachim Cuntz
  • Wolfgang Krieger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arveson, W.: Notes on extensions ofC *-algebras. Duke Math. J.44, 329–355 (1977)CrossRefGoogle Scholar
  2. 2.
    Bratteli, O.: Inductive limits of finite-dimensionalC *-algebras. Trans. A.M.S.171, 195–234 (1972)Google Scholar
  3. 3.
    Bowen, R., Franks, J.: Homology for zero-dimensional nonwandering sets. Ann. Math.106, 73–92 (1977)Google Scholar
  4. 4.
    Brown, L.G.: Stable isomorphism of hereditary subalgebras ofC *-algebras. Pac. J. Math.71, 335–348 (1977)Google Scholar
  5. 5.
    Cuntz, J.: SimpleC *-algebras generated by isometries. Commun. Math. Phys.57, 173–185 (1977)Google Scholar
  6. 6.
    Cuntz, J.: Automorphisms of certain simpleC *-algebras. Proc. of “Bielefeld Encounters in Mathematics and Physics II” in press (1979)Google Scholar
  7. 7.
    Denker, M., Grillenberger, Ch., Sigmund, K.: Ergodic Theory on compact spaces. Lecture Notes in Mathematics, Vol. 527. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  8. 8.
    Elliott, G.A.: On the classification of inductive limits of sequences of semi-simple finite-dimensional algebras. J. Algebra38, 29–44 (1976)CrossRefGoogle Scholar
  9. 9.
    Krieger, W.: On topological Markov chains, Dynamical Systems II. Warsaw June 27–July 2. 1977. Soc. Math. de France, Astérisque50, 193–196 (1977)Google Scholar
  10. 10.
    Krieger, W.: On a dimension for a class of homeomorphism groups. PreprintGoogle Scholar
  11. 11.
    Krieger, W.: On dimension functions and topological Markov chains. Invent. math.56, 239–250 (1980)Google Scholar
  12. 12.
    Parry, B., Sullivan, D.: A topological invariant of flows on O-dimensional spaces. Topology14, 297–299 (1975)CrossRefGoogle Scholar
  13. 13.
    Paschke, W., Salinas, N.: Matrix algebras overO n. PreprintGoogle Scholar
  14. 14.
    Pedersen, G.K.:C *-algebras and their automorphism groups. London, New York, San Francisco: Academic Press 1979Google Scholar
  15. 15.
    Pimsner, M., Popa, S.: The Ext-groups of someC *-algebras considered by J. Cuntz. Rev. Roum. Math. Pures et Appl.23, 1096–1076 (1978)Google Scholar
  16. 16.
    van der Waerden, B.L.: Algebra, Zweiter Teil, 5. Aufl. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  17. 17.
    Voiculescu, D.: A non-commutative Weyl-von Neumann theorem. Rev. Roum. Pures et appl.21, 97–113 (1976)Google Scholar
  18. 18.
    Williams, R.F.: Classification of subshifts of finite type. Ann. of Math.98, 120–153 (1973) Errata. Ann. of Math.99, 380–381 (1974)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Joachim Cuntz
    • 1
  • Wolfgang Krieger
    • 1
  1. 1.Sonderforschungsbereich 123, Stochastische mathematische Modelle, und Institut für Angewandte MathematikUniversität HeidelbergHeidelberg 1Germany

Personalised recommendations