Advertisement

Inventiones mathematicae

, Volume 53, Issue 2, pp 165–184 | Cite as

Representations of Coxeter groups and Hecke algebras

  • David Kazhdan
  • George Lusztig
Article

Keywords

Coxeter Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, C.T., Curtis, C.W.: On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc.165, 251–273 (1972) and202, 405–406 (1975)Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, 6, Paris: Hermann 1968Google Scholar
  3. 3.
    Curtis, C.W., Iwahori, N., Kilmoyer, R.: Hecke algebras and characters of parabolic type of finite groups with (B, N) pair, I.H.E.S. Publ. Math.40, 81–116 (1972)Google Scholar
  4. 4.
    Delorme, P.: Extensions dans la categorieO de Bernstein-Gelfand-Gelfand. Applications, preprint, Palaiseau, 1978Google Scholar
  5. 5.
    Grothendieck, A., SGA2, Amsterdam: North Holland 1968Google Scholar
  6. 6.
    Jantzen, C.J.: Moduln mit einem höchsten Gewicht. Habilitationsschrift, Bonn, 1977Google Scholar
  7. 7.
    Joseph, A.: A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint, Bonn, 1976Google Scholar
  8. 8.
    Joseph, A.:W-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra, preprint, Tel-Aviv, 1978Google Scholar
  9. 9.
    Knuth, D.E.: The art of computer programming, Addison-Wesley, 1975Google Scholar
  10. 10.
    Lusztig, G.: A class of irreducible representations of a Weyl group, in press (1979)Google Scholar
  11. 11.
    Verma, D.N.: Möblus inversion for the Bruhat ordering on a Weyl group. Ann. Sci. E.N.S., 4e serie, t.4, 393–398 (1971)Google Scholar
  12. 12.
    Vogan, D.: A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, preprint, Princeton, 1978Google Scholar
  13. 13.
    Vogan, D.: Ordering in the primitive spectrum of a semisimple Lie algebra, preprint, Princeton, 1978Google Scholar
  14. 14.
    Vogan, D.: Irreducible characters of semisimple Lie groups II. The Kazhdan-Lusztig conjectures, manuscript, 1979Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David Kazhdan
    • 1
  • George Lusztig
    • 2
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Department of MathematicsMITCambridgeUSA

Personalised recommendations