Advertisement

Inventiones mathematicae

, Volume 60, Issue 3, pp 193–248 | Cite as

Siegel's modular forms and the arithmetic of quadratic forms

  • Hiroyuki Yoshida
Article

Keywords

Quadratic Form Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrianov, A.N.: Dirichlet series with Euler products in the theory of Siegel modular forms of genus 2, Trudy Math. Inst. Steklov112, 73–94 (1971)Google Scholar
  2. 2.
    Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2, Uspekhi Math. Nauk29, 43–110 (1974)Google Scholar
  3. 3.
    Andrianov, A.N.: Modular descent or on Saito-Kurokawa conjecture, Inventiones Math.53, 267–280 (1979)Google Scholar
  4. 4.
    Andrianov, A.N., Maloletkin, G.N.: Behavior of thete series of degreeN under modular substitutions, Izv. Akad. Nauk SSSR39, 227–241 (1975)Google Scholar
  5. 5.
    Eichler, M.: Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Zeitschr.43, 102–109 (1938)Google Scholar
  6. 6.
    Eichler, M.: Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math.195, 127–151 (1955)Google Scholar
  7. 7.
    Eichler, M.: The basis problem for modular forms and the traces of Hecke operators, Lecture notes in math.320, pp. 75–151. Berlin Heidelberg New York: Springer-Verlag 1973Google Scholar
  8. 8.
    Gelbart, S.: Weil's representation and the spectrum of the metaplectic group, Lecture notes in math. 530. Berlin Heidelberg New York: Springer-Verlag 1976Google Scholar
  9. 9.
    Hecke, E.: Mathematische Werke, Zweite Auflage, Vandenhoeck, 1970Google Scholar
  10. 10.
    Howe, R.: θ-series and invariant theory, Proc. of symposia in pure mathematics,XXXIII (vol. 1), 275–286 (1979).Google Scholar
  11. 11.
    Ihara, Y.: On certain arithmetical Dirichlet series. J. Math. Soc. Japan,16, 214–225 (1964)Google Scholar
  12. 12.
    Jacquet, H., Langlands, R.P.: Automorphic forms onGL(2). Lecture notes in math. 114. Berlin Heidelberg New York: Springer-Verlag 1970Google Scholar
  13. 13.
    Kudla, S.: Theta functions and Hilbert modular forms, Nagoya Math. J.69, 97–106 (1978)Google Scholar
  14. 14.
    Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Inventiones Math.49, 149–165 (1978)Google Scholar
  15. 15.
    Maaß, H.: Die Primzahlen in der Theorie der Siegelschen Modulfunktionen. Math. Ann.124, 87–122 (1951)Google Scholar
  16. 16.
    Matsuda, I.: Dirichlet series corresponding to Siegel modular forms of degree 2, levelN. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo28, 21–49 (1978)Google Scholar
  17. 17.
    Niwa, S.: Modular forms of half integral weight and the integral of certain theta functions. Nagoya Math. J.56, 147–161 (1974)Google Scholar
  18. 18.
    Oda, T.: On modular forms associated with indefinite quadratic forms of signature (2,n−2). Math. Ann.231, 97–144 (1977)Google Scholar
  19. 19.
    Pizer, A.: Type numbers of Eichler orders. J. Reine Angew. Math.264, 76–102 (1973)Google Scholar
  20. 20.
    Rallis, S.: On a relation between\(\widetilde{SL}_2 \) cusp forms and cusp forms on tube domain associated to orthogonal groups. Proc. of symposia in pure mathematics,XXXIII (vol. 1), 297–314 (1979)Google Scholar
  21. 21.
    Satake, I.: Theory of spherical functions on reductive algebraic groups overp-adic fields. Publ. Math. IHES18, 229–293 (1963)Google Scholar
  22. 22.
    Serre, J.P.: Facteurs locaux des fonctions zêta des variétés algébriques. Séminaire Delage-Pisot-Poitou, No 19, 1969/70Google Scholar
  23. 23.
    Shimizu, H.: Theta series and automorphic forms onGL 2. J. Math. Soc. Japan,24, 638–683 (1972)Google Scholar
  24. 24.
    Shimura, G.: On modular correspondences forSp(N, Z) and their congruence relations. Proc. of the Nat. Acad. of Sciences49, 824–828 (1963)Google Scholar
  25. 25.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Iwanami-Shoten and Princeton University Press 1971Google Scholar
  26. 26.
    Shimura, G.: On modular forms of half integral weight. Ann. of Math.97, 440–481 (1973)Google Scholar
  27. 27.
    Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J.58, 83–126 (1975)Google Scholar
  28. 28.
    Siegel, C.L.: Gesammelte Abhandlungen. Berlin Heidelberg New York: Springer-Verlag 1966Google Scholar
  29. 29.
    Steinberg, R.: Lectures on Chevalley groups. Yale Univ. lecture note, 1967Google Scholar
  30. 30.
    Tamagawa, T.: On class numbers of quadratic forms, Proc. of Japan-U.S. Seminar on modern methods in number theory (1971) (in Japanese)Google Scholar
  31. 31.
    Weil, A.: Sur certains groupes d'opérateur unitaires. Acta Math.111, 143–211 (1964)Google Scholar
  32. 32.
    Weil, A.: Sur la formule de Siegel dans la théorie des groupes classique, ibid.113, 1–87 (1965)Google Scholar
  33. 33.
    Weil, A.: Dirichlet series and automorphic forms. Lecture notes in math. 189. Berlin Heidelberg New York: Springer-Verlag 1971Google Scholar
  34. 34.
    Yoshida, H.: Weil's representations of the symplectic groups over finite fields. J. Math. Soc. Japan31, 399–426 (1979)Google Scholar
  35. 35.
    Yoshida, H.: On an explicit construction of Siegel modular forms of genus 2. Proc. of Japan Acad. October 1979Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Hiroyuki Yoshida
    • 1
  1. 1.SFB, Theoretische MathematikUniversität BonnBonn 1Germany

Personalised recommendations