Advertisement

Inventiones Mathematicae

, Volume 36, Issue 1, pp 209–224 | Cite as

On the desingularization of the unipotent variety

  • Robert Steinberg
Article

Keywords

Conjugacy Class Irreducible Component Weyl Group Simple Root Parabolic Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bala, P., Carter, R. W.: Classes of unipotent elements of simple algebraic groups. To appear.Google Scholar
  2. 2.
    Benard, M.: On the Schur indices of characters of the exceptional Weyl groups. Ann. of Math.94, 89–107 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Borel, A.: Linear algebraic groups, New York: Benjamin 1969zbMATHGoogle Scholar
  4. 4.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S.27, 55–150 (1965)MathSciNetGoogle Scholar
  5. 5.
    Brieskorn, E.: Singular elements of semi-simple algebraic groups. Proc. Int. Congress Math., Nice (1970)Google Scholar
  6. 6.
    Dynkin, E. B.: Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Translations6 (2), 111–244 (1957)zbMATHGoogle Scholar
  7. 7.
    Elkington, G. B.: Centralizers of unipotent elements in semisimple algebraic groups. J. Algebra23, 137–163, (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Frobenius, G., Schur, I.: Über die reellen Darstellungen der endlichen Gruppen. Sitzgsber. preuss. Akad. Wiss. 186–208 (1906)Google Scholar
  9. 9.
    Konstant, B.: The principal three-dimensional. Amer. J. Math.81, 973–1032 (1959)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Richardson, R. W.: Conjugacy classes in Lie algebras and algebraic groups Ann. of Math.86, 1–15 (1967)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Richardson, R. W.: Conjugacy classes in parabolic subgroups of semisimple algebraic groups. Bull. London Math. Soc.6, 21–24 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Robinson, G. de B.: Representation theory of the symmetric group. University of Toronto Press 1961Google Scholar
  13. 13.
    Springer, T. A.: The unipotent variety of a semisimple group. Proc. Colloq. Alg. Geom. Tata Institute 373–391 (1969)Google Scholar
  14. 14.
    Springer, T. A.: Trigonometric sums. Green functions on finite groups and representations of Weyl groups. To appearGoogle Scholar
  15. 15.
    Springer, T. A., Steinberg, R.: Conjugacy classes. Lecture Notes in Math. 131 part E. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  16. 16.
    Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math. I.H.E.S.25, 49–80 (1965)MathSciNetGoogle Scholar
  17. 17.
    Steinberg, R.: Conjugacy classes in algebraic groups. Lecture Notes in Math. 366. Berlin-Heidelberg-New York: Springer 1974zbMATHGoogle Scholar
  18. 18.
    Vargas, J.: Fixed points under the action of unipotent elements. Ph. D. thesis, U.C.L.A. (1976)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Robert Steinberg
    • 1
  1. 1.Department of MathematicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations