Advertisement

Inventiones mathematicae

, Volume 43, Issue 2, pp 125–175 | Cite as

Irreducible representations of finite classical groups

  • G. Lusztig
Article

Keywords

Irreducible Representation Classical Group Finite Classical Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E.: Partitions,q-functions and the Lusztig-Macdonald-Wall conjectures, Inventiones math.41, 91–102 (1977)Google Scholar
  2. 2.
    Benson, C.T., Gay, D.A.: On dimension functions of the generic algebra of typeD n, J. of Algebra,45, 435–438 (1977)Google Scholar
  3. 3.
    Bourbaki, N.: Groupes et algèbres de Lie, Ch. 4,5 et 6. Paris: Hermann 1968Google Scholar
  4. 4.
    Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. of Math.103, 103–161 (1976)Google Scholar
  5. 5.
    Dye, R.: The simple groupFH (8, 2) of order 212·35·52·7 and the associated geometry of triality. Proc. London Math. Soc. (3)18, 521–562 (1968)Google Scholar
  6. 6.
    Enomoto, H.: The characters of the finite symplectic groupSp(4,q),q=2f. Osaka J. Math.9, 75–94 (1972)Google Scholar
  7. 7.
    Frame, J.S., Rudvalis, A.: Characters of symplectic groups overF 2, Finite groups '72. Proc. Gainesville Conf. p. 41–54. North Holland, Amsterdam 1973Google Scholar
  8. 8.
    Harish-Chandra: Eisenstein series over finite fields. Funct. Analysis and Related Fields (ed. F.E. Browder). Berlin-Heidelberg-New York: Springer 1970Google Scholar
  9. 9.
    Hardy, G.H., Wright, E.M.: The theory of numbers. Oxford: Clarendon Press 1971Google Scholar
  10. 10.
    Hoefsmit, P.N.: Representations of Hecke algebras of finite groups withBN pairs of classical type, Thesis, Univ. of British Columbia, Vancouver 1974Google Scholar
  11. 11.
    Kilmoyer, R.: Principal series representations of finite Chevalley groups (preprint, Clark University)Google Scholar
  12. 12.
    Langlands, R. P.: On the classification of irreducible representations of real algebraic groups, preprint, Institute for Advanced StudyGoogle Scholar
  13. 13.
    Lusztig, G.: Classification des représentations irréductibles des groupes classiques finis. c. r. Acad. Sci. Paris. Sér. A,284, 473–475 (28 Fév. 1977)Google Scholar
  14. 14.
    Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius, Inventiones math.38, 101–159 (1976)Google Scholar
  15. 15.
    Lusztig, G.: On the finiteness of the number of unipotent classes, Inventiones math.34, 201–213 (1976)Google Scholar
  16. 16.
    Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups (to appear in the J. of Algebra)Google Scholar
  17. 17.
    Spaltenstein, N.: Sous-groupes de Borel contenant un unipotent donné (preprint, University of Warwick)Google Scholar
  18. 18.
    Srinivasan, B.: The characters of the finite symplectic groupSp(4,q), Trans. Amer. math. Soc.131, 488–525 (1968)Google Scholar
  19. 19.
    Steinberg, R.: A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. math. Soc.71, 274–282 (1951)Google Scholar
  20. 20.
    Wall, G. E.: On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. math. Soc.3, 1–62 (1963)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • G. Lusztig
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations