Inventiones mathematicae

, Volume 25, Issue 1, pp 63–89 | Cite as

On manifolds representing homology classes in codimension 2

  • Emery Thomas
  • John Wood


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Ann. of Math.69, 713–717 (1959)Google Scholar
  2. 2.
    Atiyah, M., Singer, I.: The index of elliptic operators: III. Ann. of Math87, 546–604 (1968)Google Scholar
  3. 3.
    Borel, A.: Seminar on transformation groups. Ann. of Math. studies46, Princeton 1960Google Scholar
  4. 4.
    Bott, R.: On a theorem of Lefschetz. Mich, Math. J.,6, 211–216 (1959)Google Scholar
  5. 5.
    Bott, R.: The stable homotopy of the classical groups. Ann. of Math.70, 313–337 (1959)Google Scholar
  6. 6.
    Bourbaki, N.: Algèbre. Chapitre 6, 7, 2e ed., Paris: Hermann 1964Google Scholar
  7. 7.
    Bourbaki, N.: Algèbre. Chapitre 9. Paris: Hermann 1959Google Scholar
  8. 8.
    Browder, W.: Structures onM×R: Proc. Comb. Phil. Soc.67, 337–345 (1965)Google Scholar
  9. 9.
    Freedman, M.: Codimension-2 Surgery. Princeton thesis, 1973.Google Scholar
  10. 10.
    Hardy, G. H., Wright, E. M.: An introduction to the theory of numbers. 3rd ed., New York: Oxford University Press 1966Google Scholar
  11. 11.
    Hirzebruch, F.: Topological methods in algebraic geometry 3rd ed., Berlin-Heidelberg-New York: Springer 1966Google Scholar
  12. 12.
    Hirzebruch, F.: The signature of ramified converings. In: Global Analysis. Papers in honor of Kodaira, pp. 253–265. Princeton: Princeton University Press 1969Google Scholar
  13. 13.
    Hsiang, W., Szczarba, R.: On embedding surfaces in 4-manifolds Proc. of Symp. in Pure Math. XXII. Algebraic Topology, 97–103 (1971)Google Scholar
  14. 14.
    Jänich, K., Ossa, E.: On the signature of an involution. Topology8 27–30 (1969)Google Scholar
  15. 15.
    Jordan, C.: Calculus of finite differences. New York: Chelsea 1960Google Scholar
  16. 16.
    Jupp, P.: Classification of certain 6-manifolds. Proc. Camb. Phil. Soc.73, 293–300 (1973)Google Scholar
  17. 17.
    Kato, M., Matsumoto, Y.: Simply connected surgery of submanifolds in codimension two, I. J. Math. Soc. Japan24, 586–608 (1972)Google Scholar
  18. 18.
    Kervaire, M., Milnor, J.: Bernoulli numbers, homotopy groups and a theorem of Rohlin. Proc. Internat. Congress Math. 454–458 (1958)Google Scholar
  19. 19.
    Kervaire, M., Milnor, J.: On 2-spheres in 4-manifolds. PNAS47, 1651–1657 (1961)Google Scholar
  20. 20.
    Massey, W. S.: Proof of a conjecture of Whitney. Pacific J. Math.31, 143–156 (1969)Google Scholar
  21. 21.
    Milnor, J.: On simply connected 4-manifolds. International symposium on algebraic topology, p. 122–128. Mexico City: Univ. Nacional Automata de México 1958Google Scholar
  22. 22.
    Milnor, J.: Morse Theory. Ann. of Math. studies51, Princeton, 1963Google Scholar
  23. 23.
    Nielsen, N.: Traité élémentaire des nombres de Bernoulli. Paris 1923.Google Scholar
  24. 24.
    Quinn, F.: Almost canonical inverse images. (To appear in Comm. Math. Helv.)Google Scholar
  25. 25.
    Rokhlin, V. A.: Two-dimensional submanifolds of four-dimensional manifolds. Functional Analysis and Its Applications5, 39–48 (1971)Google Scholar
  26. 26.
    Shafarevich, I. R.: Foundations of algebraic geometry. Russian Math. Surveys,24, No. 6, 1–178 (1969)Google Scholar
  27. 27.
    Spanier, E.: Algebraic Topology. New York: McGraw Hill 1966Google Scholar
  28. 28.
    Spanier, E.: The homotopy excision theorem. Mich. J. Math.14, 245–255 (1967)Google Scholar
  29. 29.
    Thom, R.: Quelques propriétés globales des variétés differentiables. Comm. Math. Helv.28, 17–86 (1954)Google Scholar
  30. 30.
    Thomas, E., Wood, J.: On signatures associated with ramified coverings and embedding problems. Ann. Inst. Fourier23, 229–235 (1973)Google Scholar
  31. 31.
    Wall, C. T. C.: On simply-connected 4-manifolds. J. London Math. Soc.39, 141–149 (1964)Google Scholar
  32. 32.
    Wall, C. T. C.: Classification problems in differential topology. V. On certain 6-manifolds. Inventiones math.1, 355–374 (1966)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Emery Thomas
    • 1
  • John Wood
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations