Inventiones mathematicae

, Volume 44, Issue 1, pp 1–47 | Cite as

On the Segal-Shale-Weil representations and harmonic polynomials

  • M. Kashiwara
  • M. Vergne


Harmonic Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.L., Fischer, J., Raczka, R.: Coupling problems forU(p,q) ladder representations. Proc. Roy. Soc., Series A, vol.302, 491–500 (1968)Google Scholar
  2. 2.
    Gelbart, S.: Harmonics on Stiefel manifolds and generalized Hankel transforms. B.A.M.S.78, 451–455 (1972)Google Scholar
  3. 2a.
    Gelbart, S.: Holomorphic discrete series for the real symplectic group. Inventiones math.19, 49–58 (1973)Google Scholar
  4. 3.
    Gindikin, S.: Invariant generalized functions on homogeneous domains. Functional analysis and its applications9 (1), 56–58 (1975)Google Scholar
  5. 4.
    Gross, K., Kunze, R.: Fourier Bessel transforms and holomorphic discrete series, Proceedings of the Maryland conference on Harmonic Analysis. Lecture Notes in Mathematics 266. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  6. 4a.
    Gross, K., Kunze, R.: Bessel functions and representation theory II. To appear in J. Funct. Anal.Google Scholar
  7. 5.
    Harish-Chandra: Representations of Semi-simple Lie groups. IV. Am. J. Math.77, 743–777 (1955), V. Am. J. Math.78, 1–41 (1956), VI. Am. J. Math.78, 564–628 (1956)Google Scholar
  8. 6.
    Jacobsen, H., Vergne, M.: Wave and Dirac operators and representations of the conformal group. To appear in J. Funct. Anal.Google Scholar
  9. 7.
    Joseph, A.: The minimal orbit in a simple Lie algebra and its associated maximal Ideal. Annales Scientifiques de l'Ecole Normale Superieure9, 1–30 (1976)Google Scholar
  10. 8.
    Levine, D.A.: Systems of singular integral operators on spheres. Trans. Am. Math. Soc.144, 493–522 (1969)Google Scholar
  11. 9.
    Mack, G.: All unitary Ray representations of the conformal groupsSU(2,2) with positive energy. PreprintGoogle Scholar
  12. 10.
    Rossi, H., Vergne, M.: Analytic continuation of the holomorphic discrete series of a semi-simple group. Acta Mathematica136, 1–59 (1976)Google Scholar
  13. 11.
    Segal, E.: Foundations of the theory of dynamical systems of infinitely many degrees of freedom. Mat. fys. Medd. Danske Vid. Selsk,31 (12), 1–39 (1959)Google Scholar
  14. 12.
    Shale, D.: Linear symmetrics of free boson fields. Trans. Am. Math. Soc.103, 149–167 (1962)Google Scholar
  15. 13.
    Sternberg, S., Wolf, J.: Hermitian Lie algebras. PreprintGoogle Scholar
  16. 14.
    Strichartz, R.S.: The explicit Fourier decomposition ofL 2 (SO(n)/SO(n−m)). Can. J. Math.27, 294–310 (1975)Google Scholar
  17. 14a.
    Strichartz, R.S.: Bochner identities for Fourier transforms. Trans. A.M.S.228, 307–327 (1977)Google Scholar
  18. 15.
    Tuong-Ton-That: Lie group representations and harmonic polynomials of a matrix variable. Trans. Am. Math. Soc.216, 1–46 (1976)Google Scholar
  19. 16.
    Wallach, N.: Analytic continuation of the holomorphic discrete series II. To appearGoogle Scholar
  20. 16a.
    Wallach, N.: On the unitarizability of Representations with Highest weights, non commutative Harmonic analysis. Lecture Notes, in Math.466. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  21. 17.
    Weil, A.: Sur certains groupes d'operateurs unitaires. Acta Math.111, 193–211 (1964)Google Scholar
  22. 18.
    Duflo, M.: Representations unitaires irreductibles des groupes simples complexes de rank 2. PreprintGoogle Scholar
  23. 19.
    Howe, R.: Remark on classical invariant theory. PreprintGoogle Scholar
  24. 20.
    Saito, M.: Representations Unitaires des groupes symplectiques. Journ. Math. Soc. of Japan24, 232–251 (1972)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. Kashiwara
    • 1
    • 2
  • M. Vergne
    • 3
    • 4
  1. 1.Nagoya UniversityNagoyaJapan
  2. 2.Harvard UniversityUSA
  3. 3.Centre National de la Recherche ScientifiqueParis
  4. 4.M.I.T.CambridgeUSA

Personalised recommendations