Numerische Mathematik

, Volume 47, Issue 1, pp 1–14 | Cite as

Bessel transforms and rational extrapolation

  • John Lund
Article

Summary

A numerical method is developed which handles the Bessel transform of functions having slow rates of decrease. The method replaces the Bessel transform by a related damped transform for which the sinc quadrature rule provides an efficient and accurate approximation. It is then shown that the value of the original Bessel transform can be obtained from the damped transform by extrapolation with the Thiele algorithm.

Subject Classifications

AMS(MOS): 65D30 65R10 CR: G.1.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. NBS Appl. Math. Ser.55, 375–417. New York: Dover 1964Google Scholar
  2. 2.
    Crump, K.S.: Numerical inversion of Laplace Transforms using a Fourier series approximation. J. Assoc. Comput. Mach.23, 89–96 (1976)Google Scholar
  3. 3.
    de Balaine, G., Franklin, J.N.: The calculation of Fourier integrals. Math. Comput.20, 570–89 (1966)Google Scholar
  4. 4.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 1. New York: McGraw-Hill 1954Google Scholar
  5. 5.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 2. New York: McGraw-Hill 1954Google Scholar
  6. 6.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 2. New York: John Wiley 1977Google Scholar
  7. 7.
    Hildebrand, F.B.: Introduction to Numerical Analysis. (2nd ed.) New York: McGraw-Hill 1974Google Scholar
  8. 8.
    Longman, I.M.: Note on a method for computing infinite integrals of oscillatory functions. Proc. Camb. Philos.52, 764–68 (1956)Google Scholar
  9. 9.
    Olver, F.W.J.: Asymptotics and Special Functions. New York: Academic Press 1974Google Scholar
  10. 10.
    Sidi, A.: Extrapolation methods for oscillatory infinite integrals. J. Inst. Math. App.26, 1–20 (1980)Google Scholar
  11. 11.
    Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev.23, 165–224 (1981)Google Scholar
  12. 12.
    Stenger, F.: Explicit, nearly optimal, linear rational approximation with preassigned poles. (in preparation)Google Scholar
  13. 13.
    Stenger, F.: Optimal convergence of minimum norm approximations inH p. Numer. Math.29, 342–62 (1978)Google Scholar
  14. 14.
    Widder, D.V.: The Laplace Transform. Princeton: University Press 1941Google Scholar
  15. 15.
    Wuytack, L.: A new technique for rational extrapolation to the limit. Numer. Math.17, 215–221 (1971)Google Scholar
  16. 16.
    Wynn, P.: On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc. Camb. Philos.52, 663–71 (1960)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • John Lund
    • 1
  1. 1.Montana State UniversityBozemanUSA

Personalised recommendations