Inventiones mathematicae

, Volume 40, Issue 1, pp 59–106 | Cite as

Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics I

  • Sergio Albeverio
  • Raphael Höegh-Krohn


We give a theory of oscillatory integrals in infinitely many dimensions which extends, for a class of phase functions, the finite dimensional theory. In particular we extend the method of stationary phase, the theory of Lagrange immersions and the corresponding asymptotic expansions to the infinite dimensional case. A particular application of the theory to the Feyman path integrals defined in previous work by the authors yields asymptotic expansions to all orders of quantum mechanical quantities in powers of Planck's constant.


Stationary Phase Quantum Mechanic Asymptotic Expansion Phase Function Dimensional Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1.
    Erdélyi, A.: Asymptotic expansions. Dover 1956Google Scholar
  2. 1.2.
    Heading, J.: An introduction to phase-integral methods. London-New York: Wiley 1962Google Scholar
  3. 2.1.
    Maslov, V.P.: The quasi-classical asymptotic solutions of some problems in mathematical physics I. J. Comp. Math.1, 123–141 (1961) (transl.); II. J. of Comp. Math.1, 744–778 (1961) (transl.)Google Scholar
  4. 2.2.
    Maslov, V.P.: Théorie des perturbations et méthodes asymptotiques. Paris: Dunod 1972 (transl.)Google Scholar
  5. 2.3.
    Maslov, V.P.: Characteristics of pseudo-differential operators. Proc. Internat. Congress Math. (Nice, 1970), Vol.2. Paris: Gauthiers-Villars 1971Google Scholar
  6. 3.
    Leray, J.: Solutions asymptotiques et groupe symplectique. In: Fourier integral operators and partial differential equations, pp. 73–97. Lecture Notes in Math.459. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  7. 4.1.
    Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)Google Scholar
  8. 4.2.
    Duistermaat, J.J., Hörmander, L.: Fourier integral operators II. Acta Math.128, 183–269 (1972)Google Scholar
  9. 4.3.
    Hörmander, L.: The calculus of Fourier integral operators. In: Prospects in mathematics. Ann. of Math. Studies70. Princeton: Princeton University Press 1971Google Scholar
  10. 4.4.
    Hörmander, L.: On the existence and the regularity of solutions of linear pseudo-differential equations. L'enseignement Math.17, 99–163 (1971)Google Scholar
  11. 5.
    Duistermaat, J.J.: Fourier integral operators. Courant Institute Lecture Notes. New York, 1973Google Scholar
  12. 6.
    Duistermaat, J.J.: Oscillatory integrals. Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math.27, 207–281 (1974)Google Scholar
  13. 7a.
    Arnold, V.I.: Integrals of quickly oscillating functions and singularities of projections of Lagrange manifolds. Funct. Analys. and its Appl.6 (3), 222–224 (1972) (transl.)Google Scholar
  14. 7b.
    Arnold, V.I.: Remarks on the stationary phase method and Coxeter numbers. Russ. Math. Surveys28, 19–48 (1973)Google Scholar
  15. 7c.
    Arnold, V.I.: Classification of unimodal critical points of functions. Funct. Analys. and its Appl.7 (3), 230–231 (1973) (transl.) and references given therein, see also e.g. [7, 8]Google Scholar
  16. 7d.
    Arnold, V.I.: Normal forms of functions in neighborhoods of degenerate critical points. Russ. Math. Surveys29 (2), 10–50 (1974) (transl.)Google Scholar
  17. 8.1.
    Bernshtein, I.N.: Modules over a ring of differential operators. Study of the fundamental solution of equations with constant coefficients. Funct. Analys. and its Appl.5 (2), 89–101 (1971)Google Scholar
  18. 8.2.
    Malgrange, B.: Integrales asymptotiques et monodromie. Ann. Scient. Ec. Norm. Sup., 43 Série,7, 405–430 (1974)Google Scholar
  19. 9.
    Guillemin, V., Schaeffer, D.: Remarks on a paper of Ludwig. Bull. Am. Math. Soc.79, 382–385 (1973)Google Scholar
  20. 10.
    Thom, R.: Stabilité structurelle et morphogénèse. Reading: Benjamin 1972Google Scholar
  21. 11.
    Albeverio, S., Høegh-Krohn, R.: Mathematical theory of Feynman path integrals. Lecture Notes in Math.523. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  22. 12.1.
    Berry, M.V., Mount, K.E.: Semiclassical approximations in wave mechanics. Rep. Progr. Phys.35, 315–397 (1972)Google Scholar
  23. 12.2.
    Voros, A.: Semi-classical approximations. Ann. Inst. H. Poinc.24, 31–90 (1976)Google Scholar
  24. 13.
    Fröman, N., Fröman, P.O.: JWKB approximation. Contributions to the theory. Amsterdam: North Holland 1965Google Scholar
  25. 14.1.
    Birkhoff, G.D.: Quantum mechanics and asymptotic series. Bull. Am. Math. Soc.39, 681–700 (1933)Google Scholar
  26. 14.2.
    Keller, J.B., Lewis, R.M., Seckler, B.D.: Asymptotic solutions of some differential problems. Commun. Pure and Appl. Math.9, 207–265 (1956)Google Scholar
  27. 14.3.
    Lax, P.D.: Asymptotic solutions of oscillatory initial value problems. Duke Math. J.24, 627–646 (1957)Google Scholar
  28. 14.4.
    Babič, V.M., Ed.: Mathematical question in the theory of wave diffraction I, Proc. Stekl. Inst. Math.115 (1971) (transl.); II, Stekl. Math. Inst., Leningrad15 (1971) (transl.)Google Scholar
  29. 15.1.
    Andrié, M.: Der klassische Grenzfall der Quantentheorie. Comment. Physico-Math.41, 333–351 (1971)Google Scholar
  30. 15.2.
    Hepp, K.: The classical limit for quantum mechanical correlation functions. Comm. math. Phys.35, 265–277 (1974)Google Scholar
  31. 15.3.
    Hepp, K.: On the classical limit in quantum mechanics. Lecture given at the International School in Mathematical Physics, Camerino, 1974, to be published in AstérisqueGoogle Scholar
  32. 15.4.
    Lieb, E.H.: The classical limit of quantum spin systems. Commun. math. Phys.31, 327–340 (1973)Google Scholar
  33. 15.5.
    Hepp, K., Lieb, E.H.: Constructive macroscopic quantum electrodynamics, in Constructive quantum field theory, G. Velo and A. Wightman, eds. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  34. 15.6.
    Albeverio, S., Høegh-Krohn, R.: Homogeneous random fields and statistical mechanics. J. Funct. Analys.19, 242–272 (1975)Google Scholar
  35. 16a.
    Jost, R.: Poisson brackets (an unpedagogical lecture). Rev. Mod. Phys.36, 572–579 (1964)Google Scholar
  36. 16b.
    Berezin, F.: Quantization, lectures given at XII Winter School in Karpacz, 1975, to be publishedGoogle Scholar
  37. 17.1.
    Eckmann, J.P., Sénéor, R.: The Maslov-WKB method for the harmonic oscillator. Arch. Rat. Mech. Anal.61, 153–173 (1976)Google Scholar
  38. 17.2.
    Colin de Verdière, Y.: Spectre du Laplacien et longueurs des géodésiques périodiques, I, II. Comp. Math.27, 83–106, 159–184 (1973)Google Scholar
  39. 17.3.
    Duistermaat, J.J. Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristic. Inventiones math.29, 39–79 (1975)Google Scholar
  40. 18.
    Huber, A.: Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. Math. Ann.138, 1–26 (1959)Google Scholar
  41. 19.
    Fierz, M.: Private communicationGoogle Scholar
  42. 20.
    Dirac, P.A.M.: On the analogy between classical and quantum mechanics. Rev. Mod. Phys.17, 195–199 (1945)Google Scholar
  43. 21.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys.20, 367–387 (1948)Google Scholar
  44. 22.
    Morette, C.: On the definition and approximation of Feynman's path integrals. Phys. Rev.81, 848–852 (1951)Google Scholar
  45. 23.
    Groenewold, H.J.: Quasi-classical path integrals, Kgl. Danske Videnskab. Selskab, Mat-fys. Medd.30 (19), 1–36 (1956)Google Scholar
  46. 24.
    Pauli, W.: Ausgewählte Kapitel aus der Feldquantisierung, ausg. U. Hochstrasser-M.F. Schafroth, E.T.H., Zürich (1951), AppendixGoogle Scholar
  47. 25.
    Choquard, Ph.: Traitement semi-classique des forces générales dans la représentation de Feynman. Helv. Phys. Acta28, 89–157 (1955)Google Scholar
  48. 26.
    Maslov, V.P.: Stationary phase method for Feynman's continual integral. Theor. and Math. Phys.2–3, 21–25 (1970) (transl.)Google Scholar
  49. 27.
    Kato, T.: Perturbation theory for linear operators. New York: Springer 1966Google Scholar
  50. 28.
    Arnold, V.I.: On a characteristic class which enters in quantization conditions. Funct. Analys. Appl.1, 1–13 (1967) (transl.)Google Scholar
  51. 29.
    Daletskii, Yu.L.: Integration in function spaces. In: Progress in mathematics,4, R.V. Gamkrelidze, ed., pp. 87–132. transl. New York: Plenum 1969Google Scholar
  52. 30.
    Colin de Verdière, Y.: Parametrix de l'équation des ondes et intégrales sur l'espace des chemins, Séminaire Goulaouic Lions-Schwartz Exp. XX, 1975Google Scholar
  53. 31.
    Albeverio, S.: Lectures on the mathematical theory of Feynman path integrals, pp. 140–205. In: Proceedings of the conference on probabilistic and functional methods in quantum field theory (XII-th Winter School of Theoretical Physics, Karpacz, 1975). Acta Univ. Wratisl. No. 368, 1976Google Scholar
  54. 32.
    Maslov, V.P., Chebotarev, A.M.: Generalized measures and Feynman path integrals. Teor. i Mat. Fyz.28, 3, 291–306 (1976) (Russ.)Google Scholar
  55. 33.
    Truman, A.: Feynman path integrals and quantum mechanics as ℏ→0. J. Math. Phys.17, 1852–1862 (1976)Google Scholar
  56. 34.
    Combe, Ph., Rideau, G., Rodriguez, R., Sirugue-Collin, M.: On some mathematical problems in the definition of Feynman path integral. Marseille Preprint, July 1976Google Scholar
  57. 35.
    Schulman, L.S.: Caustics and multivaluednes: two results of adding path amplitudes, pp. 144–156. In: Functional integration and its applications, A.M. Arthurs, ed. Oxford: Clarendon Press 1975Google Scholar
  58. 36.
    Grossmann, A., Seiler, R.: Heat equation on phase space and the classical limit of quantum mechanical expectation values. Comm. Math. Phys.48, 195–197 (1976)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Sergio Albeverio
    • 1
  • Raphael Höegh-Krohn
    • 1
  1. 1.Institute of MathematicsUniversity of OsloOsloNorway

Personalised recommendations