Real homotopy theory of Kähler manifolds
Article
- 1.3k Downloads
- 305 Citations
Keywords
Manifold Homotopy Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bansfield, A., Kan, D.: Homotopy limits, completions and localizations. Lecture Notes in Mathematics304 Berlin-Heidelberg-New York: Springer 1972Google Scholar
- 2.Chen, K. T.: Algebras of iterated path integrals and fundamental groups. Trans. Amer. Math. Soc.156, 359–379 (1971)Google Scholar
- 3.Chern, S.S.: Complex manifolds without potential theory. Princeton, N. J.: Van Nostrand 1967Google Scholar
- 4.Deligne, P.: Théorie de Hodge III. Publ. Math. IHES44 (1974)Google Scholar
- 5.Deligne, P.: La conjecture de Weil I. Publ. Math. IHES43, 273–307 (1974)Google Scholar
- 6.Friedlander, E. Griffiths, P., Morgan, J.: Lecture NotesDe Rham theory of Sulliran. Lecture Notes. Istituto Matematico, Florence, Italy 1972Google Scholar
- 7.Malcev, A.: Nilpotent groups without torsion. Izv. Akad. Nauk. SSSR. Math.13, 201–212 (1949)Google Scholar
- 8.Moišezon, B. G.: Onn-dimensional compact varieties withn algebraically independent meromorphic functions I, II, III. Izv. Akad. Nauk SSSR Ser. Math.30, 133–174 345–386, 621–656 (1966) Also Amer. Math. Soc. Translations. ser. 2 vol. 63 (1967)Google Scholar
- 9.Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds Ann. of Math.65, 391–404 (1957)Google Scholar
- 10.Quillen, D.: Rational Homotopy Theory. Ann. of Math.90, 205–295 (1969)Google Scholar
- 11.Serre, J.-P.: Groupes d'homotopie et classes de groupes abéliens. Ann. of Math.58, 258–294 (1953)Google Scholar
- 12.Sullivan, D.: De Rham homotopy theory, (to appear)Google Scholar
- 13.Sullivan, D.: Genetics of Homotopy Theory and the Adams conjecture. Ann. of Math.100, 1–79 (1974)Google Scholar
- 14.Sullivan, D.: Topology of Manifolds and Differential Forms, (to appear) Proceedings of Conference on Manifolds, Tokyo, Japan, 1973Google Scholar
- 15.Weil, A.: Introduction à l'étude des Variétés Kählériennes. Paris: Hermann 1958Google Scholar
- 16.Whitehead, J. H. S.: An Expression of Hopfs Invariant as an Integral. Proc. Nat. Ac. Sci.33, 117–123 (1947)Google Scholar
- 17.Whitney, H.: Geometric Integration Theory. Princeton University Press 1957Google Scholar
- 18.Whitney, H.: On Products in a Complex. Ann. of Math.39, 397–432 (1938)Google Scholar
- 19.Morgan, J.: The Algebraic topology of open, non singular algebraic varieties (in preparation)Google Scholar
- 20.Deligne, P.: Théoréme de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. IHES35, 107–126 (1968)Google Scholar
- 21.Parshin, A. N.: A generalization of the Jacobian variety. (Russ.). Investia30, 175–182 (1966)Google Scholar
Copyright information
© Springer-Verlag 1975