Advertisement

Inventiones mathematicae

, Volume 29, Issue 3, pp 245–274 | Cite as

Real homotopy theory of Kähler manifolds

  • Pierre Deligne
  • Phillip Griffiths
  • John Morgan
  • Dennis Sullivan
Article

Keywords

Manifold Homotopy Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansfield, A., Kan, D.: Homotopy limits, completions and localizations. Lecture Notes in Mathematics304 Berlin-Heidelberg-New York: Springer 1972Google Scholar
  2. 2.
    Chen, K. T.: Algebras of iterated path integrals and fundamental groups. Trans. Amer. Math. Soc.156, 359–379 (1971)Google Scholar
  3. 3.
    Chern, S.S.: Complex manifolds without potential theory. Princeton, N. J.: Van Nostrand 1967Google Scholar
  4. 4.
    Deligne, P.: Théorie de Hodge III. Publ. Math. IHES44 (1974)Google Scholar
  5. 5.
    Deligne, P.: La conjecture de Weil I. Publ. Math. IHES43, 273–307 (1974)Google Scholar
  6. 6.
    Friedlander, E. Griffiths, P., Morgan, J.: Lecture NotesDe Rham theory of Sulliran. Lecture Notes. Istituto Matematico, Florence, Italy 1972Google Scholar
  7. 7.
    Malcev, A.: Nilpotent groups without torsion. Izv. Akad. Nauk. SSSR. Math.13, 201–212 (1949)Google Scholar
  8. 8.
    Moišezon, B. G.: Onn-dimensional compact varieties withn algebraically independent meromorphic functions I, II, III. Izv. Akad. Nauk SSSR Ser. Math.30, 133–174 345–386, 621–656 (1966) Also Amer. Math. Soc. Translations. ser. 2 vol. 63 (1967)Google Scholar
  9. 9.
    Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds Ann. of Math.65, 391–404 (1957)Google Scholar
  10. 10.
    Quillen, D.: Rational Homotopy Theory. Ann. of Math.90, 205–295 (1969)Google Scholar
  11. 11.
    Serre, J.-P.: Groupes d'homotopie et classes de groupes abéliens. Ann. of Math.58, 258–294 (1953)Google Scholar
  12. 12.
    Sullivan, D.: De Rham homotopy theory, (to appear)Google Scholar
  13. 13.
    Sullivan, D.: Genetics of Homotopy Theory and the Adams conjecture. Ann. of Math.100, 1–79 (1974)Google Scholar
  14. 14.
    Sullivan, D.: Topology of Manifolds and Differential Forms, (to appear) Proceedings of Conference on Manifolds, Tokyo, Japan, 1973Google Scholar
  15. 15.
    Weil, A.: Introduction à l'étude des Variétés Kählériennes. Paris: Hermann 1958Google Scholar
  16. 16.
    Whitehead, J. H. S.: An Expression of Hopfs Invariant as an Integral. Proc. Nat. Ac. Sci.33, 117–123 (1947)Google Scholar
  17. 17.
    Whitney, H.: Geometric Integration Theory. Princeton University Press 1957Google Scholar
  18. 18.
    Whitney, H.: On Products in a Complex. Ann. of Math.39, 397–432 (1938)Google Scholar
  19. 19.
    Morgan, J.: The Algebraic topology of open, non singular algebraic varieties (in preparation)Google Scholar
  20. 20.
    Deligne, P.: Théoréme de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. IHES35, 107–126 (1968)Google Scholar
  21. 21.
    Parshin, A. N.: A generalization of the Jacobian variety. (Russ.). Investia30, 175–182 (1966)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Pierre Deligne
    • 1
  • Phillip Griffiths
    • 2
  • John Morgan
    • 1
    • 3
  • Dennis Sullivan
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations