Advertisement

Inventiones mathematicae

, Volume 30, Issue 1, pp 1–46 | Cite as

Modular forms associated to real quadratic fields

  • Don Zagier
Article

Keywords

Modular Form Quadratic Field Real Quadratic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of mathematical functions. New York: Dover 1965Google Scholar
  2. 2.
    Doi, K., Naganuma, H.: On the functional equation of certain Dirichlet series. Inventiones math9, 1–14 (1969)Google Scholar
  3. 3.
    Hardy, G. H., Wright, E. M.: An introduction to the theory of numbers.4th ed., Oxford: Clarendon Press 1965Google Scholar
  4. 4.
    Hecke, E.: Analytische Funktionen und algebraische Zahlen. II. Abh. aus dem Math. Seminar der Hamburgischen Univ.3, 213–236 (1924) (Mathematische Werke, pp. 381–404. Göttingen: Vandenhoeck & Ruprecht 1970)Google Scholar
  5. 5.
    Hecke, E.: Über die Darstellung der Determinante einer positiven quadratischen Form durch die Form, Vierteljahrschrift d. Naturforschenden Gesellschaft in Zürich85, 64–70 (1940) (Mathematische Werke, pp. 782–788 Göttingen: Vandenhoeck & Ruprecht 1970)Google Scholar
  6. 6.
    Jacquet, H.: Automorphic Functions onGL(2). Part II. Lecture Notes in Mathematics278, Berlin-Heidelberg-New York, Springer 1972Google Scholar
  7. 7.
    Lehner, J.: Discontinuous groups and automorphic functions. AMS, Providence 1964Google Scholar
  8. 8.
    Naganuma, H.: On the coincidence of two Dirichlet series associated with cusp forms of Hecke's “Neben”-type and Hilbert modular forms over a real quadratic field. J. Math. Soc. Japan25, 547–555 (1973)Google Scholar
  9. 9.
    Ogg, A.: Survey of modular functions of one variable. Modular functions of one variable I. Lecture Notes in Mathematics320, pp. 1–36. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  10. 10.
    Rankin, R.: Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. I. Proc. Camb. Phil. Soc.35, 351–356 (1939)Google Scholar
  11. 11.
    Siegel, C. L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl.10, 87–102 (1969)Google Scholar
  12. 12.
    Zagier, D.: Formes modulaires à une et deux variables. C. R. Acad. Sci. Paris A,279, 683–686 (1974)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Don Zagier
    • 1
  1. 1.Mathematisches Institut der UniversitätBonnFederal Republic of Germany

Personalised recommendations