Inventiones mathematicae

, Volume 6, Issue 1, pp 91–105 | Cite as

The Tate-Šafarevič group of a constant abelian variety

  • J. S. Milne


Abelian Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, M.: Grothendieck topologies, Lecture notes, Harvard 1962.Google Scholar
  2. 2.
    Artin, M., et A. Grothendieck: Cohomologie étale des schémas. Séminaire de Géométrie Algébrique de l'I. H. E. S. 1963/64.Google Scholar
  3. 3.
    Birch, B., and H. Swinnerton-Dyer: Notes on elliptic, curves (II). J. reine u. angew. Math.218, 79–108 (1965).Google Scholar
  4. 4.
    Cassels, J.: Diophantine equations with special reference to elliptic curves. Journ. London Math. Soc.41, 193–291 (1966).Google Scholar
  5. 5.
    Demazure, M., et A. Grothendieck: Schémas en groupes. Séminaire de Géometrie Algébrique de l'I. H. E. S. 1962/64.Google Scholar
  6. 6.
    Giraud, J.: Cohomologie non-abélienne. Columbia University, 1966.Google Scholar
  7. 7.
    Greenberg, M.: Schemata over local rings II. Ann. of Math.78, 256–266 (1963).Google Scholar
  8. 8.
    — Rational points in henselian discrete valuation rings. Publ. Math.31, 59–64 (1966).Google Scholar
  9. 9.
    Grothendieck, A., et J. Dieudonné: Elements de géométrie algébrique. Publ. Math. (1959).Google Scholar
  10. 10.
    Grothendieck, A., S'eminaire de géométric algébrique de l'I.H.E.S., 1960/61.Google Scholar
  11. 11.
    —: Fondements de la géométrie algébrique. Paris: Secrétaria Mathématique, 11 rue Pierre Curie 1962.Google Scholar
  12. 12.
    Grothendieck, A.: Le groupe de Brauer III: Examples et complements, mimeographed notes, I.H.E.S., 1966.Google Scholar
  13. 13.
    Lang, S.: Unramified class field theory over function fields in several variables. Annals of Math.64 (2), 285–325 (1956).Google Scholar
  14. 14.
    —: Abelian varieties. Interscience Tracts, no. 7. New York: Interscience 1959.Google Scholar
  15. 15.
    —, and A. Néron: Rational points of abelian varieties in function fields. Amer. J. Math.81, 95–118 (1959).Google Scholar
  16. 16.
    —, et J.-P. Serre: Sur les revêtements non ramifiés des variétés algébriques. Amer. J. Math.79, 319–330 (1957).Google Scholar
  17. 17.
    —, and J. Tate: Principal homogeneous spaces over abelian varieties. Amer. J. Math.80, 659–684 (1968).Google Scholar
  18. 18.
    Milne, J.: Extensions of abelian varieties defined over a finite field. Inventiones math.5, 63–84 (1968).Google Scholar
  19. 19.
    Miyanishi, M.: On the pro-representability of a functor on the category of finite group schemes. J. Math. Kyoto6, 31–48 (1966).Google Scholar
  20. 20.
    Mumford, D.: A remark on Mordell's conjecture. Amer. J. Math.87, 1007–1016 (1965).Google Scholar
  21. 21.
    Néron, A.: Quasi-functions et hauteurs sur les variétés abéliennes. Ann. of Math.82, 249–331 (1965).Google Scholar
  22. 22.
    Ogg, A.: Cohomology of abelian varieties over function fields. Ann. of Math. (2)76, 185–212 (1962).Google Scholar
  23. 23.
    Oort, F.: Commutative group schemes. Lecture notes in Math. 15. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  24. 24.
    —, and T. Oda: Higher extensions of abelian varieties. Nagoya Math. J.31, 81–88 (1968).Google Scholar
  25. 25.
    Raynaud, M.: Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes. Séminaire Bourbaki 1964/65, no. 286, 19 pp.Google Scholar
  26. 26.
    Šafarevič, I.: Principal homogeneous spaces defined over a function field. Amer. Math. Soc. Transl. (2),37, 85–114 (1964).Google Scholar
  27. 27.
    Serre, J.-P.: Sur la topologie des variétés algébriques en caracteristiquep. Symposium Internacional de Topologia Algebrica, Mexico, 1956.Google Scholar
  28. 28.
    —: Groupes algébriques et corps de classes. Paris: Hermann 1959.Google Scholar
  29. 29.
    Tate, J.: Duality theorems in galois cohomology over number-fields. Proc. Intern. Congress Math. Stockholm, 1962, 288–295.Google Scholar
  30. 30.
    Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analogue. Seminaire Bourbaki 1965/66, no. 306.Google Scholar
  31. 31.
    —: Endomorphisms of abelian varieties over finite fields. Inventiones math.2, 134–144 (1966).Google Scholar
  32. 32.
    Verdier, J.: A duality theorem in the étale cohomology of schemes: Proceedings of a conference on local fields. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  33. 33.
    Weil, A.: On algebraic groups and homogeneous spaces. Amer. J. Math.77, 497–512 (1955).Google Scholar
  34. 34.
    —: The field of definition of a variety. Amer. J. Math.78, 509–524 (1956).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • J. S. Milne
    • 1
  1. 1.Department of MathematicsUniversity College LondonLondon(England)

Personalised recommendations