Advertisement

Inventiones mathematicae

, Volume 18, Issue 3–4, pp 183–266 | Cite as

Rational points of abelian varieties with values in towers of number fields

  • Barry Mazur
Article

Keywords

Rational Point Abelian Variety Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M.: Auto-duality of the Jacobian. Mineographed notes. Bowdoin Summer Conference in Algebraic Geometry, 1967.Google Scholar
  2. 2.
    [GT] Artin, M.: Grothendieck topologies. Mimeographed notes. Harvard University, 1962.Google Scholar
  3. 3.
    [SGAA] Artin, M., Grothendieck, A.: Séminaire de géometrie algébrique 1963–64. Cohomologie, étale des schémas Mimeographed notes. Institut des Hautes Etudes Scientifiques, Paris.Google Scholar
  4. 4.
    Artin, M., Mazur, B.: Etale homotopy. Lecture Notes in Math. no. 178. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  5. 5.
    Artin, M., Mazur, B.: Flat arithmetic duality (in preparation).Google Scholar
  6. 6.
    Artin, M., Verdier, J.L.: Etale arithmetic duality. Proceedings of the summer conference in Algebraic Geometry held at Woodshole, Mass. 1965.Google Scholar
  7. 7.
    Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves I. J. Reine Angew. Math.212, 7–25 (1963); 11218, 79–108 (1965).Google Scholar
  8. 8.
    Burnside, W.: The theory of groups (2nd Ed.). Cambridge University Press 1911.Google Scholar
  9. 9.
    Cassels, J. W. S.: On a diophantine equation. Acta Arithmetica6, 47–52 (1960).Google Scholar
  10. 10.
    Cassels, J. W. S.: Diophantine equations with special reference to elliptic curves. J. London Math. Soc.41, 193–291 (1966).Google Scholar
  11. 11.
    Cassels, J. W. S.: Arithmetic on curves of genus one (IV). J. Reine Angew. Math.211, 95–112 (1962).Google Scholar
  12. 12.
    Cassels, J. W. S., Fröhlich, A. (eds.): Algebraic number theory. London-New York: Academic Press 1967.Google Scholar
  13. 13.
    Cassels, J. W. S., Sansone G.: Sur le probleme de M. Werner Mnich. Acta Arithmetica7, 187–190 (1961/62).Google Scholar
  14. 14.
    Deligne, P.: Variétés abéliennes ordinaires sur un corps fini. Inventiones math.8, 238–243 (1969).Google Scholar
  15. 15.
    [SGAD] Demazure, M., Grothendieck, A.: Schémas en groupes. Séminaire I. H. E. S., 1963–64. Lecture Notes in Math. nos. 151–153. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  16. 16.
    Eichler, M.: Quaternäre, quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math.5, 355–366 (1954).Google Scholar
  17. 17.
    Greenberg, M. J.: Schemata over local rings. Ann. of Math.73, no. 3, 624–648 (1961); II, Ann. of Math.78, no. 2, 256–266 (1963).Google Scholar
  18. 18.
    Greenberg, M. J.: Pro-algebraic structure on the rational subgroup, of ap-adic abelian variety. Ph. D. thesis. Princeton University 1959.Google Scholar
  19. 19.
    Grothendieck, A.: Sur quelques points d'algèbre homologique. Tohoku Math. J.9, 119–221 (1957).Google Scholar
  20. 20.
    [GB III] Grothendieck, A.: Le groupe de Brauer III: exemples et compléments (a continuation of Bourbaki exposés: 290, 297). Published in Dix exposés sur la cohomologie des schémas. Amsterdam: North-Holland Pub. Cie. 1968.Google Scholar
  21. 21.
    Grothendieck, A.: Techniques de déscente et théorèmes d'existence en géometrie algébrique. Séminaire Bourbaki, 12, exp. 195 (1959–60). New York-Amsterdam: Benjamin Inc. 1966.Google Scholar
  22. 22.
    [EGA] Grothendieck, A.: Redigé avec la collaboration de J. Dieudonné, Éléments de géométrie algébrique. Publications Mathematiques, I. H. E. S., 4, 8, 11, 17, 20, 24, 28, 32 Paris (1961–68).Google Scholar
  23. 23.
    [SGA] Grothendieck A.: Revêtements étales et groupes fondamentaux. Séminaires de Géométrie Algébrique à l'I. H. E. S. (60–61). Lecture Notes in Math. no. 224. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  24. 24.
    Hardy, G. H., Littlewood, J. E.: Some problems of partitic numerorum III. Acta Math.44, 1–70 (1923); reprinted in: G. H. Hardy, Collected papers, vol. 1, Oxford (1966), 561–630.Google Scholar
  25. 25.
    Hasse, H.: Existenz separabler zyklischer unverzweigter Erweiterungskörper vom Primzahlgradep über elliptischen Funktionenkörpern der Charkteristikp. J. Reine Angew. Math.172, 2, 77–85 (1934).Google Scholar
  26. 26.
    Hasse, H., Witt, E.: Zyklischer unverzweigter Erweiterungskörper vom Primzahlgradep über einem Funktionenkörper der Charakteristikp. Monatshefte für Math. u. Physik43, 477–492 (1936).Google Scholar
  27. 27.
    Honda, T.: Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan20, 83–95 (1968).Google Scholar
  28. 28.
    Igusa, J.: Kroneckerian model of fields of elliptic modular functions. Amer. J. Math.81, 561–577 (1959).Google Scholar
  29. 29.
    Iwasawa, K.: On some properties of Γ-finite modules. Ann. of Math.70, no. 2, 291–312 (1959).Google Scholar
  30. 30.
    Iwasawa, K.: On Γ-extensions of number fields. Bull. Amer. Math. Soc.65, no. 4, 183–226 (1959).Google Scholar
  31. 31.
    Iwasawa, K.: On the theory of cyclotomic fields. Ann. of Math.70, no. 3, 530–561 (1959).Google Scholar
  32. 32.
    Iwasawa, K., Sims, C. C.: Computation of invariants in the theory of cyclotomic fields. J. of the Math. Soc. of Japan18, no. 1, 86–96 (1966).Google Scholar
  33. 33.
    Kubota, T., Leopoldt, H. W.: Einep-adische Theorie der Zetawerte (Teil I) J. Reine Angew. Math.213, 228–239 (1964).Google Scholar
  34. 34.
    Lang, S.: Algebraic numbers. Reading, Mass: Addison-Wesley 1964.Google Scholar
  35. 35.
    Lang, S.: Algebraic groups over finite fields. Amer. J. Math.78, no. 3, 555–563 (1956).Google Scholar
  36. 36.
    Ligozat, G.: FonctionL des courbes modulaires. Mimeo. notes. Séminaire Delange-Pisot-Poitou, 1969/70, no. 9. Version to appear Courbes modulaires de genre 1.Google Scholar
  37. 37.
    Manin, Ju.: Cyclotomic fields and modular curves [in Russian]. Uspekhi Mat. Nauk. Tom XXVI6, (162), 7–71 (1971). Translation to appear in Russian Math. Surveys. London Math. Society.Google Scholar
  38. 38.
    Mazur, B.: Rational points of Abelian varieties with values in towers of number fields. Mimeo. notes, Harvard U. 1969.Google Scholar
  39. 39.
    Mazur, B.: Arithmétique des courbes elliptiques sur les corps cyclotomiques. Mimeographed notes by J. F. Boutot of a course given at Orsay 1970, distributed by I. H. E. S. Paris.Google Scholar
  40. 40.
    Mazur, B.: Local flat duality Amer. Journal of Math.92, 343–361 (1970).Google Scholar
  41. 41.
    Mazur, B., Roberts, L.: Local Euler characteristics. Inventiones math.9, 201–234 (1970).Google Scholar
  42. 42.
    Mazur, B., Swinnerton-Dyer H. P. F.: Thep-adicL-series of an elliptic curve (in preparation).Google Scholar
  43. 43.
    Milne, J. S.: Extensions of abelian varieties defined over a finite field. Inventiones math.5, 63–84 (1968).Google Scholar
  44. 44.
    Mumford, D.: Lectures on curves on an algebraic surface (with the assistance of G. M. Bergman). Ann. of Math. Studies59, Princeton, 1966.Google Scholar
  45. 45.
    Mumford, D.: Geometric invariant theory. Ergebnisse Math., Bd. 34. Berlin-Heidelerg-New York: Springer 1965.Google Scholar
  46. 46.
    Mumford, D., Oort, F.: Deformations and lifting of finite commutative group schemes. Inventiones math.5, 317–334 (1968).Google Scholar
  47. 47.
    Néron, A.: Modèles mimimaux des variétés abéliennes sur les corps locaux et globaux. Publications Mathematiques, I. H. E. S., no. 21 (1964).Google Scholar
  48. 48.
    Ogg, A.: Elliptic curves and wild ramification. Amer. J. of. Math.89, 1–21 (1967).Google Scholar
  49. 49.
    Oort, F.: Commutative group schemes. Lecture Notes in Mathematics no. 15. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  50. 50.
    Oort, F., Tate, J.: Group schemes of prime order. Ann. Scient. Ec. Norm. Sup., series 4,3, 1–21 (1970).Google Scholar
  51. 51.
    Raynaud, M.: Passage au quotient par une relation d'équivalence plate. Proc. of a Conference on Local Fields. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  52. 52.
    Serre, J.-P.: Classes de corps cyclotomiques. Séminie bourbaki no. 174 (1958). New York-Amsterdam: W. A. Benjamin, Inc. 1966.Google Scholar
  53. 53.
    [CG] Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Mathematics no. 5. Berlin-Heidelberg-New York: Springer 1964.Google Scholar
  54. 54.
    [CL] Serre, J.-P.: Corps locaux. Paris: Hermann 1962.Google Scholar
  55. 55.
    Serre, J.-P.: Sur les corps locaux à corps résidue algébriquement clos, 2. Bull. Soc. Math. France89, 105–154 (1961).Google Scholar
  56. 56.
    Serre, J.-P.: Corps locaux et isogénies. Séminaire Bourbaki, exposé 185, 1958–59.Google Scholar
  57. 57.
    Serre, J.-P.: Groupes proalgébriques, I.H.E.S., Publication Mathematique no. 7 (1960).Google Scholar
  58. 58.
    Serre, J.-P.: Groupes de Liel-adiques attachés aux courbes elliptiques. Colloque de Clermont-Ferrand (1964). Mimeographed notes published by I.H.E.S.Google Scholar
  59. 59.
    [LG] Serre, J.-P.: Lie algebra and Lie groups. Lectures at Harvard University, 1964. New York-Amsterdam: W. A. Benjamin Inc. 1965.Google Scholar
  60. 60.
    Serre, J.-P.: Abelianl-adic representations and elliptics curves. Lectures at McGill University. New York-Amsterdam: W. A. Benjamin Inc. 1968.Google Scholar
  61. 61.
    Serre, J.-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inventiones math15, 259–331 (1972).Google Scholar
  62. 62.
    Serre, J.-P.: Groupesp-divisibles. Séminaire Bourbaki, exp. 318 (1966–67). New York-Amsterdam: W. A. Benjamin Inc. 1966.Google Scholar
  63. 63.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492–517 (1968).Google Scholar
  64. 64.
    Shimura, G.: Correspondances modulaires et les fonctions zêta de courbes algébriques. J. Math. Soc. Japan10, 1–28 (1958).Google Scholar
  65. 65.
    Shimura, G., Taniyama, Y.: Complex multiplication of abelian varietie and its applications to number theory. Publ. Math. Soc., Japan, no. 6, Tokyo 1961.Google Scholar
  66. 66.
    Swinnerton-Dyer, P.: The conjectures of Birch and Swinnerton-Dyer and of Tate. Proceeding of a conference on Local Fields, NUFFIC Summer School helds at Driebergen in 1966, p. 132–157. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  67. 67.
    Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Intern. Congress Math., at Stockholm, 1962, 288–295. Institute Mittag-Leffler Djursholm, Sweden (1963).Google Scholar
  68. 68.
    Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki, exp. 306 (1966). New York-Amsterdam: W. A. Benjamin Inc. 1966.Google Scholar
  69. 69.
    Tate, J.:p-divisible groups. Proceedings of a Conference on Local Fields, NUFFIC Summer School held at Driebergen, p. 158–183 (1966). Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  70. 70.
    Tate, J.: Classes d'isogénie des variétés abéliennes sur un corps fini, (d'après T. Honda). Séminaire Bourbaki, exp. 352 (1968–69).Google Scholar
  71. 71.
    Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones math.2, 134–144 (1966).Google Scholar
  72. 72.
    Weil, A.: Varietés abéliennes et courbes algébriques. Paris: Hermann 1948.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Barry Mazur
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations