Inventiones mathematicae

, Volume 18, Issue 3–4, pp 183–266 | Cite as

Rational points of abelian varieties with values in towers of number fields

  • Barry Mazur
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M.: Auto-duality of the Jacobian. Mineographed notes. Bowdoin Summer Conference in Algebraic Geometry, 1967.Google Scholar
  2. 2.
    [GT] Artin, M.: Grothendieck topologies. Mimeographed notes. Harvard University, 1962.Google Scholar
  3. 3.
    [SGAA] Artin, M., Grothendieck, A.: Séminaire de géometrie algébrique 1963–64. Cohomologie, étale des schémas Mimeographed notes. Institut des Hautes Etudes Scientifiques, Paris.Google Scholar
  4. 4.
    Artin, M., Mazur, B.: Etale homotopy. Lecture Notes in Math. no. 178. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  5. 5.
    Artin, M., Mazur, B.: Flat arithmetic duality (in preparation).Google Scholar
  6. 6.
    Artin, M., Verdier, J.L.: Etale arithmetic duality. Proceedings of the summer conference in Algebraic Geometry held at Woodshole, Mass. 1965.Google Scholar
  7. 7.
    Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves I. J. Reine Angew. Math.212, 7–25 (1963); 11218, 79–108 (1965).Google Scholar
  8. 8.
    Burnside, W.: The theory of groups (2nd Ed.). Cambridge University Press 1911.Google Scholar
  9. 9.
    Cassels, J. W. S.: On a diophantine equation. Acta Arithmetica6, 47–52 (1960).Google Scholar
  10. 10.
    Cassels, J. W. S.: Diophantine equations with special reference to elliptic curves. J. London Math. Soc.41, 193–291 (1966).Google Scholar
  11. 11.
    Cassels, J. W. S.: Arithmetic on curves of genus one (IV). J. Reine Angew. Math.211, 95–112 (1962).Google Scholar
  12. 12.
    Cassels, J. W. S., Fröhlich, A. (eds.): Algebraic number theory. London-New York: Academic Press 1967.Google Scholar
  13. 13.
    Cassels, J. W. S., Sansone G.: Sur le probleme de M. Werner Mnich. Acta Arithmetica7, 187–190 (1961/62).Google Scholar
  14. 14.
    Deligne, P.: Variétés abéliennes ordinaires sur un corps fini. Inventiones math.8, 238–243 (1969).Google Scholar
  15. 15.
    [SGAD] Demazure, M., Grothendieck, A.: Schémas en groupes. Séminaire I. H. E. S., 1963–64. Lecture Notes in Math. nos. 151–153. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  16. 16.
    Eichler, M.: Quaternäre, quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math.5, 355–366 (1954).Google Scholar
  17. 17.
    Greenberg, M. J.: Schemata over local rings. Ann. of Math.73, no. 3, 624–648 (1961); II, Ann. of Math.78, no. 2, 256–266 (1963).Google Scholar
  18. 18.
    Greenberg, M. J.: Pro-algebraic structure on the rational subgroup, of ap-adic abelian variety. Ph. D. thesis. Princeton University 1959.Google Scholar
  19. 19.
    Grothendieck, A.: Sur quelques points d'algèbre homologique. Tohoku Math. J.9, 119–221 (1957).Google Scholar
  20. 20.
    [GB III] Grothendieck, A.: Le groupe de Brauer III: exemples et compléments (a continuation of Bourbaki exposés: 290, 297). Published in Dix exposés sur la cohomologie des schémas. Amsterdam: North-Holland Pub. Cie. 1968.Google Scholar
  21. 21.
    Grothendieck, A.: Techniques de déscente et théorèmes d'existence en géometrie algébrique. Séminaire Bourbaki, 12, exp. 195 (1959–60). New York-Amsterdam: Benjamin Inc. 1966.Google Scholar
  22. 22.
    [EGA] Grothendieck, A.: Redigé avec la collaboration de J. Dieudonné, Éléments de géométrie algébrique. Publications Mathematiques, I. H. E. S., 4, 8, 11, 17, 20, 24, 28, 32 Paris (1961–68).Google Scholar
  23. 23.
    [SGA] Grothendieck A.: Revêtements étales et groupes fondamentaux. Séminaires de Géométrie Algébrique à l'I. H. E. S. (60–61). Lecture Notes in Math. no. 224. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  24. 24.
    Hardy, G. H., Littlewood, J. E.: Some problems of partitic numerorum III. Acta Math.44, 1–70 (1923); reprinted in: G. H. Hardy, Collected papers, vol. 1, Oxford (1966), 561–630.Google Scholar
  25. 25.
    Hasse, H.: Existenz separabler zyklischer unverzweigter Erweiterungskörper vom Primzahlgradep über elliptischen Funktionenkörpern der Charkteristikp. J. Reine Angew. Math.172, 2, 77–85 (1934).Google Scholar
  26. 26.
    Hasse, H., Witt, E.: Zyklischer unverzweigter Erweiterungskörper vom Primzahlgradep über einem Funktionenkörper der Charakteristikp. Monatshefte für Math. u. Physik43, 477–492 (1936).Google Scholar
  27. 27.
    Honda, T.: Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan20, 83–95 (1968).Google Scholar
  28. 28.
    Igusa, J.: Kroneckerian model of fields of elliptic modular functions. Amer. J. Math.81, 561–577 (1959).Google Scholar
  29. 29.
    Iwasawa, K.: On some properties of Γ-finite modules. Ann. of Math.70, no. 2, 291–312 (1959).Google Scholar
  30. 30.
    Iwasawa, K.: On Γ-extensions of number fields. Bull. Amer. Math. Soc.65, no. 4, 183–226 (1959).Google Scholar
  31. 31.
    Iwasawa, K.: On the theory of cyclotomic fields. Ann. of Math.70, no. 3, 530–561 (1959).Google Scholar
  32. 32.
    Iwasawa, K., Sims, C. C.: Computation of invariants in the theory of cyclotomic fields. J. of the Math. Soc. of Japan18, no. 1, 86–96 (1966).Google Scholar
  33. 33.
    Kubota, T., Leopoldt, H. W.: Einep-adische Theorie der Zetawerte (Teil I) J. Reine Angew. Math.213, 228–239 (1964).Google Scholar
  34. 34.
    Lang, S.: Algebraic numbers. Reading, Mass: Addison-Wesley 1964.Google Scholar
  35. 35.
    Lang, S.: Algebraic groups over finite fields. Amer. J. Math.78, no. 3, 555–563 (1956).Google Scholar
  36. 36.
    Ligozat, G.: FonctionL des courbes modulaires. Mimeo. notes. Séminaire Delange-Pisot-Poitou, 1969/70, no. 9. Version to appear Courbes modulaires de genre 1.Google Scholar
  37. 37.
    Manin, Ju.: Cyclotomic fields and modular curves [in Russian]. Uspekhi Mat. Nauk. Tom XXVI6, (162), 7–71 (1971). Translation to appear in Russian Math. Surveys. London Math. Society.Google Scholar
  38. 38.
    Mazur, B.: Rational points of Abelian varieties with values in towers of number fields. Mimeo. notes, Harvard U. 1969.Google Scholar
  39. 39.
    Mazur, B.: Arithmétique des courbes elliptiques sur les corps cyclotomiques. Mimeographed notes by J. F. Boutot of a course given at Orsay 1970, distributed by I. H. E. S. Paris.Google Scholar
  40. 40.
    Mazur, B.: Local flat duality Amer. Journal of Math.92, 343–361 (1970).Google Scholar
  41. 41.
    Mazur, B., Roberts, L.: Local Euler characteristics. Inventiones math.9, 201–234 (1970).Google Scholar
  42. 42.
    Mazur, B., Swinnerton-Dyer H. P. F.: Thep-adicL-series of an elliptic curve (in preparation).Google Scholar
  43. 43.
    Milne, J. S.: Extensions of abelian varieties defined over a finite field. Inventiones math.5, 63–84 (1968).Google Scholar
  44. 44.
    Mumford, D.: Lectures on curves on an algebraic surface (with the assistance of G. M. Bergman). Ann. of Math. Studies59, Princeton, 1966.Google Scholar
  45. 45.
    Mumford, D.: Geometric invariant theory. Ergebnisse Math., Bd. 34. Berlin-Heidelerg-New York: Springer 1965.Google Scholar
  46. 46.
    Mumford, D., Oort, F.: Deformations and lifting of finite commutative group schemes. Inventiones math.5, 317–334 (1968).Google Scholar
  47. 47.
    Néron, A.: Modèles mimimaux des variétés abéliennes sur les corps locaux et globaux. Publications Mathematiques, I. H. E. S., no. 21 (1964).Google Scholar
  48. 48.
    Ogg, A.: Elliptic curves and wild ramification. Amer. J. of. Math.89, 1–21 (1967).Google Scholar
  49. 49.
    Oort, F.: Commutative group schemes. Lecture Notes in Mathematics no. 15. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  50. 50.
    Oort, F., Tate, J.: Group schemes of prime order. Ann. Scient. Ec. Norm. Sup., series 4,3, 1–21 (1970).Google Scholar
  51. 51.
    Raynaud, M.: Passage au quotient par une relation d'équivalence plate. Proc. of a Conference on Local Fields. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  52. 52.
    Serre, J.-P.: Classes de corps cyclotomiques. Séminie bourbaki no. 174 (1958). New York-Amsterdam: W. A. Benjamin, Inc. 1966.Google Scholar
  53. 53.
    [CG] Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Mathematics no. 5. Berlin-Heidelberg-New York: Springer 1964.Google Scholar
  54. 54.
    [CL] Serre, J.-P.: Corps locaux. Paris: Hermann 1962.Google Scholar
  55. 55.
    Serre, J.-P.: Sur les corps locaux à corps résidue algébriquement clos, 2. Bull. Soc. Math. France89, 105–154 (1961).Google Scholar
  56. 56.
    Serre, J.-P.: Corps locaux et isogénies. Séminaire Bourbaki, exposé 185, 1958–59.Google Scholar
  57. 57.
    Serre, J.-P.: Groupes proalgébriques, I.H.E.S., Publication Mathematique no. 7 (1960).Google Scholar
  58. 58.
    Serre, J.-P.: Groupes de Liel-adiques attachés aux courbes elliptiques. Colloque de Clermont-Ferrand (1964). Mimeographed notes published by I.H.E.S.Google Scholar
  59. 59.
    [LG] Serre, J.-P.: Lie algebra and Lie groups. Lectures at Harvard University, 1964. New York-Amsterdam: W. A. Benjamin Inc. 1965.Google Scholar
  60. 60.
    Serre, J.-P.: Abelianl-adic representations and elliptics curves. Lectures at McGill University. New York-Amsterdam: W. A. Benjamin Inc. 1968.Google Scholar
  61. 61.
    Serre, J.-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inventiones math15, 259–331 (1972).Google Scholar
  62. 62.
    Serre, J.-P.: Groupesp-divisibles. Séminaire Bourbaki, exp. 318 (1966–67). New York-Amsterdam: W. A. Benjamin Inc. 1966.Google Scholar
  63. 63.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492–517 (1968).Google Scholar
  64. 64.
    Shimura, G.: Correspondances modulaires et les fonctions zêta de courbes algébriques. J. Math. Soc. Japan10, 1–28 (1958).Google Scholar
  65. 65.
    Shimura, G., Taniyama, Y.: Complex multiplication of abelian varietie and its applications to number theory. Publ. Math. Soc., Japan, no. 6, Tokyo 1961.Google Scholar
  66. 66.
    Swinnerton-Dyer, P.: The conjectures of Birch and Swinnerton-Dyer and of Tate. Proceeding of a conference on Local Fields, NUFFIC Summer School helds at Driebergen in 1966, p. 132–157. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  67. 67.
    Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Intern. Congress Math., at Stockholm, 1962, 288–295. Institute Mittag-Leffler Djursholm, Sweden (1963).Google Scholar
  68. 68.
    Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki, exp. 306 (1966). New York-Amsterdam: W. A. Benjamin Inc. 1966.Google Scholar
  69. 69.
    Tate, J.:p-divisible groups. Proceedings of a Conference on Local Fields, NUFFIC Summer School held at Driebergen, p. 158–183 (1966). Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  70. 70.
    Tate, J.: Classes d'isogénie des variétés abéliennes sur un corps fini, (d'après T. Honda). Séminaire Bourbaki, exp. 352 (1968–69).Google Scholar
  71. 71.
    Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones math.2, 134–144 (1966).Google Scholar
  72. 72.
    Weil, A.: Varietés abéliennes et courbes algébriques. Paris: Hermann 1948.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Barry Mazur
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations