Inventiones mathematicae

, Volume 7, Issue 2, pp 148–158 | Cite as

Invariant rational functions and a problem of Steenrod

  • Richard G. Swan


Rational Function Invariant Rational Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bass, H.: Big projective modules are free. Ill. J. Math.7, 24–31 (1963).Google Scholar
  2. 2.
    Cartan, H., and S. Eilenberg: Homological algebra. Princeton, 1956.Google Scholar
  3. 3.
    Curtis, C. W., and I. Reiner: Representation theory of finite groups and associative algebras. New York: Interscience 1962.Google Scholar
  4. 4.
    Hasse, H.: Zahlentheorie. Berlin: Akademie-Verlag 1963.Google Scholar
  5. 5.
    Kaplansky, I.: Modules over Dedekind rings and valuation rings. Trans. Amer. Math. Soc.72, 327–340 (1952).Google Scholar
  6. 6.
    Kuyk, W.: On a theorem of E. Noether. Nederl. Akad. Wetensch. Proc., Ser. A67, 32–39 (1964).Google Scholar
  7. 7.
    Lang, S.: Diophantine geometry. New York: Interscience 1962.Google Scholar
  8. 8.
    Masuda, K.: On a problem of Chevalley. Nagoya Math. J.8, 59–63 (1955).Google Scholar
  9. 9.
    —: Application of the theory of the group of classes of projective modules to the existence problem of independent parameters of invariant. J. Math. Soc. Japan20, 223–232 (1968).Google Scholar
  10. 10.
    Noether, E.: Gleichungen mit vorgeschriebener Gruppe. Math. Ann.78, 221–229 (1916).Google Scholar
  11. 11.
    Rim, D. S.: modules over finite groups. Ann. of Math.69, 700–712 (1959).Google Scholar
  12. 12.
    Roquette, P.: Einheiten und Divisorenklassen in endlich erzeugbaren Körpern. J. Deutsch. Math. Verein60, 1–27 (1958).Google Scholar
  13. 13.
    Samuel, P.: Sur les anneaux factoriels. Bull. Soc. Math. France89, 155–173 (1961).Google Scholar
  14. 14.
    Serre, J.-P.: Modules projectifs et espaces fibrés à fibre vectorielle. Sem. Dubreil, Paris 1958.Google Scholar
  15. 15.
    Swan, R. G.: Induced representations and projective modules. Ann. of Math.71, 552–578 (1960).Google Scholar
  16. 16.
    —: Periodic resolutions for finite groups. Ann. of Math.72, 267–291 (1960).Google Scholar
  17. 17.
    —: The Grothendieck ring of a finite group. Topology2, 85–110 (1963).Google Scholar
  18. 18.
    Zariski, O., and P. Samuel: Commutative algebra. Vol. I. Princeton: Van Nostrand 1958.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Richard G. Swan
    • 1
  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations