Inventiones mathematicae

, Volume 7, Issue 2, pp 120–136 | Cite as

Duality theorems for curves overP-adic fields

  • Stephen Lichtenbaum


Duality Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, M.: Grothendieck Topologies. Seminar notes, Harvard University 1962.Google Scholar
  2. 2.
    Cassels, J. W. S.: Diophantine equations with special reference to elliptic curves. Jour. London Math. Soc.41, 193–291 (1966).Google Scholar
  3. 3.
    Grothendieck, A.: Le groupe de Brauer I, Algèbres d'Azumaya et interpretations diverses; Seminaire Bourbaki, Mai 1965. no 290, 21 p., et II, Théorie cohomologique; Seminaire Bourbaki, Nov. 1965, no. 297, 21 p.Google Scholar
  4. 4.
    Grothendieck, A.: Le groupe de Brauer III, Exemples et compléments. Mimeographed notes, I.H.E.S. 1966.Google Scholar
  5. 5.
    Lang, S.: Abelian Varieties. New York: Interscience 1959.Google Scholar
  6. 6.
    —, and J. Tate: Principal homogeneous spaces over abelian varieties. Amer. J. of Math.80, 659–684 (1958).Google Scholar
  7. 7.
    Lichtenbaum, S.: The period-index problem for elliptic curves. Amer. J. of Math. (to appear).Google Scholar
  8. 8.
    Roquette, P.: Splitting of algebras by function fields of one variable. Nagoya Math. Jour.27, 625–642 (1966).Google Scholar
  9. 9.
    Tate, J.: Cohomology of abelian varieties overp-adic fields. (Notes by S. Lang, Princeton Univ. May 1959.)Google Scholar
  10. 10.
    Tate, J.WC-groups overp-adic fields. Seminaire Bourbaki, Décembre 1957, no 156, 13p.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Stephen Lichtenbaum
    • 1
  1. 1.Department of MathematicsWhite Hall Cornell UniversityIthacaUSA

Personalised recommendations