Inventiones mathematicae

, Volume 42, Issue 1, pp 1–62 | Cite as

A geometric construction of the discrete series for semisimple Lie groups

  • Michael Atiyah
  • Wilfried Schmid


Geometric Construction Discrete Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. Asterisque32/33, 43–72 (1976)Google Scholar
  2. 2.
    Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology3, 3–38 (1964)CrossRefGoogle Scholar
  3. 3.
    Atiyah, M.F., Schmid, W.: A new proof of the regularity theorem for invariant eigendistributions on semisimple Lie groups. To appearGoogle Scholar
  4. 4.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators on compact manifolds. Bull. Amer. math. Soc.69, 422–433 (1963)Google Scholar
  5. 5.
    Borel, A.: Compact Clifford-Klein forms of symmetric spaces. Topology2, 111–122 (1963)CrossRefGoogle Scholar
  6. 6.
    Borel, A., Harish-Chandra: Arithmetic subgroups of algebraic groups. Ann. of Math.75, 485–535 (1962)Google Scholar
  7. 7.
    Borel, A., Wallach, N.: Seminar notes on the cohomology of discrete subgroups of semi-simple groups. To appear in Springer Lecture Notes in MathematicsGoogle Scholar
  8. 8.
    Bott, R.: The index theorem for homogeneous differential operators. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) pp. 167–186. Princeton: Princeton University Press 1965Google Scholar
  9. 9.
    Casselman, W.: Matrix coefficients of representations of real reductive matrix groups. To appearGoogle Scholar
  10. 10.
    Casselman, W., Osborne, M.S.: Then-cohomology of representations with an infinitesimal character. Compositio Math.31, 219–227 (1975)Google Scholar
  11. 11.
    Fomin, A.I., Shapovalov, N.N.: A property of the characters of real semisimple Lie groups. Functional Analysis and its Applications8, 270–271 (1974)CrossRefGoogle Scholar
  12. 12.
    Harish-Chandra: The characters of semisimple Lie groups. Trans. Amer. math. Soc.83, 98–163 (1956)Google Scholar
  13. 13.
    Harish-Chandra: Invariant eigendistributions on a semisimple Lie group. Trans. Amer. math. Soc.119, 457–508 (1965)Google Scholar
  14. 14.
    Harish-Chandra: Discrete series for semisimple Lie groups I. Acta Math.113, 241–318 (1965)Google Scholar
  15. 15.
    Harish-Chandra: Discrete series for semisimple Lie groups II. Acta Math.116, 1–111 (1966)Google Scholar
  16. 16.
    Harish-Chandra: Harmonic Analysis on semisimple groups. Bull. Amer. Math. Soc.76, 529–551 (1970)Google Scholar
  17. 17.
    Hirzebruch, F.: Automorphe Formen und der Satz von Riemann-Roch. In: Symp. Intern. Top. Alg. 1956, 129–144, Universidad de Mexico 1958Google Scholar
  18. 18.
    Kazdan, D.A.: On arithmetic varieties. In: Proc. Summer School on Group Representations, Budapest 1971, 151–217, New York: Halsted Press 1975Google Scholar
  19. 19.
    Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math.74, 329–387 (1961)Google Scholar
  20. 20.
    Langlands, R.P.: The dimension of spaces of automorphic forms. In: Algebraic Groups and Discontinuous Subgroups, Proc. of Symposia in Pure Mathematics, vol. IX, 253–257, Amer. Math. Soc., Providence 1966Google Scholar
  21. 21.
    Narasimhan, M.S., Okamoto, K.: An analogue of the Borel-Weil-Bott theorem for Hermitian symmetric pairs of noncompact type. Ann. of Math.91, 486–511 (1970)Google Scholar
  22. 22.
    Parthasarathy, R.: Diract operators and the discrete series. Ann. of Math.96, 1–30 (1972)Google Scholar
  23. 23.
    Schmid, W.: On a conjecture of Langlands. Ann. of Math.93, 1–42 (1971)Google Scholar
  24. 24.
    Schmid, W.: Some properties of square-integrable representations of semisimple Lie groups. Ann. of Math.102, 535–564 (1975)Google Scholar
  25. 25.
    Schmid, W.:L 2-cohomology and the discrete series. Ann. of Math.103, 375–394 (1976)Google Scholar
  26. 26.
    Warner, G.: Harmonic Analysis on Semi-Simple Lie groups, vols. I and II. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  27. 27.
    Zuckerman, G.: Tensor products of finite and infinite dimensional representations of semisimple Lie groups. To appear in Ann. of Math.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Michael Atiyah
    • 1
  • Wilfried Schmid
    • 2
  1. 1.Mathematical InstituteOxfordEngland
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations