Inventiones mathematicae

, Volume 53, Issue 3, pp 227–247 | Cite as

Closures of conjugacy classes of matrices are normal

  • Hanspeter Kraft
  • Claudio Procesi
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv.54, 61–104 (1979)Google Scholar
  2. 2.
    De Concini, C., Procesi, C.: A characteristic free approach to invariant theory. Adv. Math.21, 330–354 (1976)Google Scholar
  3. 3.
    Donovan, P., Freislich, M.R.: The representation theory of finite graphs and associated algebras. Carleton Lecture Notes5 (1973)Google Scholar
  4. 4.
    Elkik, R.: Désingularisation des adhérences d'orbites polarisables et des nappes dans les algèbres de Lie réductives. Preprint.Google Scholar
  5. 5.
    Gabriel, P.: Représentations indécomposables. Seminaire Bourbaki exp.444, Springer Lecture Notes431 (1975)Google Scholar
  6. 6.
    Grothendieck, A., Dieudonné, J.: EGA O-IV. Publ. Math. de l'I.H.E.S.11, 20, 24, 32; Paris (1961–1967)Google Scholar
  7. 7.
    Hesselink, W.: Singularities in the nilpotent scheme of a classical group. Trans. Am. Math. Soc.222, 1–32 (1976)Google Scholar
  8. 8.
    Hesselink, W.: Closure of orbits in a Lie algebra. Comment. Math. Helv.54, 105–110 (1979)Google Scholar
  9. 9.
    Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings I. Springer Lecture Notes339 (1973)Google Scholar
  10. 10.
    Kostant, B.: A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory. J. Math. Mech.7, 237–264 (1958)Google Scholar
  11. 11.
    Kostant, B.: Lie group representations on polynomial rings. Am. J. Math.86, 327–402 (1963)Google Scholar
  12. 12.
    Kostant, B., Rallis, S.: Orbits and representations associated with symmetric spaces. Am. J. Math.93, 753–809 (1971)Google Scholar
  13. 13.
    Kraft, H.: Parametrisierung von Konjugationsklassen in\(\mathfrak{s}\mathfrak{l}_n \). Math. Ann.234, 209–220 (1978)Google Scholar
  14. 14.
    Nazarova, L.A.: Representations of quivers of infinite type. Akad. Nauk. SSSR37, 752–791 (1973)Google Scholar
  15. 15.
    Procesi, C.: The invariant theory ofn×n matrices. Adv. Math.19 306–381 (1976)CrossRefGoogle Scholar
  16. 16.
    Sibirskii, K.S.: On unitary and orthogonal matrix invariants. Dokl. Akad. Nauk SSSR172 no 1 (1967)Google Scholar
  17. 17.
    Vinberg, E.B.: The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR40, no 3 (1976)Google Scholar
  18. 18.
    Weyl, H.: Classical groups. Princeton Math. Series1 (1946)Google Scholar
  19. 19.
    Loupias, M.: Représentations indécomposables de dimension finie des algèbres de Lie. Manuscripta math.6, 365–379 (1972)CrossRefGoogle Scholar
  20. 20.
    Mumford, D.: Geometric Invariant Theory. Erg. der Math.34, Berlin-Heidelberg-New York: Springer Verlag 1970Google Scholar
  21. 21.
    Demazure, M.: Démonstration de la conjecture de Mumford (d'après W. Haboush). Sém. Bourbaki 74/75, exp.462. Berlin-Heidelberg-New York: Springer Verlag, Lecture Notes514 (1976)Google Scholar
  22. 22.
    Vust, Th.: Sur la théorie des invariants des groupes classiques. Ann. Inst. Fourier26, 1–31 (1976)Google Scholar
  23. 23.
    Procesi, C., Kraft, H.: Classi coniugati inGL(n),ℤ. Rend. Sem. mat. Univ. Roma (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hanspeter Kraft
    • 1
  • Claudio Procesi
    • 2
  1. 1.Sonderforschungsbereich Theoretische MathematikUniversität BonnBonnGermany
  2. 2.Istituto di MatematicaUniversitá di RomaRomeItaly

Personalised recommendations