Advertisement

Inventiones mathematicae

, Volume 53, Issue 3, pp 193–225 | Cite as

Plane partitions (III): The weak Macdonald conjecture

  • George E. Andrews
Article

Keywords

Plane Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E.: MacMahon's conjecture on symmetric plane partitions. Proc. Nat. Acad. Sci. USA,74, 426–429 (1977)Google Scholar
  2. 2.
    Andrews, G.E.: Plane partitions (II): the equivalence of the Bender-Knuth and MacMahon conjectures. Pac. J. Math.,72, 283–291 (1977)Google Scholar
  3. 3.
    Andrews, G.E.: The Theory of Partitions, Addision-Wesley, Reading, 1976Google Scholar
  4. 4.
    Andrews, G.E.: Plane partitions (I): the MacMahon conjecture, Advances in Math. (to appear)Google Scholar
  5. 5.
    Andrews, G.E.: On Macdonald's conjecture and descending plane partitions, Proceedings of the Alfred Young Day Conference (to appear)Google Scholar
  6. 6.
    Askey, R., Wilson, J.: A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols, S.I.A.M. J. Math. Anal., (to appear)Google Scholar
  7. 7.
    Bailey, W.N.: Generalized Hypergeometric Series. London and New York: Cambridge University Press 1935Google Scholar
  8. 8.
    Carlitz, L.: Rectangular arrays and plane partitions, Acta Arith.,13, 22–47 (1967)Google Scholar
  9. 9.
    Gansner, E.: Matrix correspondences and the enumeration of plane partitions, Ph.D. Thesis, M.I.T., 1978Google Scholar
  10. 10.
    Macdonald, I.G.: Lecture on plane partitions, Oberwolfach Conference on Combinatorics and Special Functions, May 1977Google Scholar
  11. 11.
    MacMahon, P.A.: Partitions of numbers whose graphs possess symmetry. Trans. Cambridge Phil. Soc.,17, 149–170 (1898–99)Google Scholar
  12. 12.
    MacMahon, P.A.: Combinatory Analysis, Vol. 2. London and New York: Cambridge University Press 1916Google Scholar
  13. 13.
    Muir, T.: A Treatise on the Theory of Determinants. London: Longmans 1933Google Scholar
  14. 14.
    Stanley, R.P.: Theory and applications of plane partitions I, Studies in Appl. Math.,50, 167–188 (1971)Google Scholar
  15. 15.
    Stanley, R.P.: Theory and applications of plane partitions II, Studies in Appl. Math.50, 259–279 (1971)Google Scholar
  16. 16.
    Whipple, F.J.W.: Well-poised series and other generalized hypergeometric series, Proc. London Math. Soc. (2),25, 525–544 (1926)Google Scholar
  17. 17.
    Whipple, F.J.W.: Some transformations of generalized hypergeometric series, Proc. London Math. Soc. (2),26, 257–272 (1927)Google Scholar
  18. 18.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th ed., London and New York: Cambridge University Press 1958Google Scholar
  19. 19.
    Wilson, J.: Three-term contiguous relations and some new orthogonal polynomials, from Pade and Rational Approximation (Saff and Varga, eds.). New York-London: Academic Press, 1977Google Scholar
  20. 20.
    Wilson, J.: Ph.D. Thesis, University of Wisconsin, 1978Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • George E. Andrews
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations