Numerische Mathematik

, Volume 44, Issue 1, pp 103–110

Eigenvector matrices of symmetric tridiagonals

  • B. N. Parlett
  • W. -D. Wu
Article

Summary

A simple test is given for determining whether a given matrix is the eigenvector matrix of an (unknown) unreduced symmetric tridiagonal matrix. A list of known necessary conditions is also provided. A lower bound on the separation between eigenvalues of tridiagonals follows from our Theorem 3.

Subject Classifications

AMS(MOS) 6540 CR: 5.14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slepian, D.: Prolate sheroidal wave functions, fourier analysis, and uncertainty, Part V. Bell System Tech. J.57, 1371–1430 (1978)Google Scholar
  2. 2.
    Slepian, D.: Some comments on fourier analysis, uncertainty and modeling. SIAM Rev.25, 379–394 (1983)Google Scholar
  3. 3.
    Grunbaum, F.A.: Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions. SIAM J. Alg. Disc. Math.2, 136–141 (1981)Google Scholar
  4. 4.
    Grunbaum, F.A.: Toeplitz matrices commuting with tridiagonal matrices. Lin. Alg. Appl.40, 25–36 (1981)Google Scholar
  5. 5.
    Grunbaum, F.A.: A remark on Hilbert's matrix. Linear Algebra and Appl.43, 119–124 (1982)Google Scholar
  6. 6.
    Parlett, B.N.: The symmetric eigenvalue problem. New Jersey: Prentice Hall Inc. 1980Google Scholar
  7. 7.
    Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford University Press 1965Google Scholar
  8. 8.
    Gantmacher, F.P., Krein, M.G.: Oscillation matrices and Kernels. United States Atomic Energy Commission, Office of Technical Information, AEC-tr-4481 Physics (1961) (The Russian orginal appeared in 1950)Google Scholar
  9. 9.
    Marcus, M., Minc, H.: A survey of matrix theory and matrix inequalities. Allyn and Bacon, 1964Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • B. N. Parlett
    • 1
  • W. -D. Wu
    • 2
  1. 1.Mathematics DepartmentUniversity of California-BerkeleyBerkeleyUSA
  2. 2.Beijing Centre for International Economic InformationBeijingPRC

Personalised recommendations