Polarization and unitary representations of solvable Lie groups
Article
- 349 Downloads
- 99 Citations
Keywords
Unitary Representation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Auslander, L., Kostant, B.: Quantization and representations of solvable Lie groups. Bull. A.M.S.73, 692–695 (1967).Google Scholar
- 2.Auslander, L., Moore, C. C.: Unitary representations of solvable Lie groups. Memoirs A.M.S.62 (1966).Google Scholar
- 3.—, Brezin, J.: Almost algebraic Lie algebras. J. of Algebra8, 295–313 (1968).Google Scholar
- 4.Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform I. Comm. Pure and Applied Math.14, 187–214 (1961).Google Scholar
- 5.Bernat, M. P.: Sur les representations unitaires des groupes de Lie resolubles. Ann. Sci. Ecole Norm. Sup.82, 37–99 (1965).Google Scholar
- 6.Brezin, J.: Unitary representation theory for solvable Lie groups. Memoirs A.M.S.79 (1968).Google Scholar
- 7.Kirillov, A. A.: Unitary representations of nilpotent Lie groups. Uspehi, Mat. Nauk.17, 57–110 (1962).Google Scholar
- 8.Kostant, B.: Quantization and unitary representations, p. 87–207, Lecture Notes in Mathematics.170. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
- 9.Pukanszky, L.: On the theory of exponential groups. Trans. A.M.S.126, 487–507 (1967).Google Scholar
- 10.—: Lecons sur les representations des groupes. Monographes Soc. Math. de France. Paris: Dunod 1967.Google Scholar
- 11.Rosenlicht, M.: A remark on quotient spaces. Anais da Academic Brasileina de Ciencias35, 487–489 (1963).Google Scholar
- 12.Streater, R.F.: The representations of the oscillator group. Comm. Math. and Phys.4, 217–236 (1967).Google Scholar
- 13.Weil, A.: Varietes Kahleriennes, Actualites Scientific et Industrielle, 1267. Paris: Hermann 1958.Google Scholar
- 14.Effros, E.: A decomposition theorem for representations of aC *-algebra. Trans. A.M.S.107, 83–106 (1963).Google Scholar
Copyright information
© Springer-Verlag 1971