Advertisement

Inventiones mathematicae

, Volume 14, Issue 4, pp 255–354 | Cite as

Polarization and unitary representations of solvable Lie groups

  • L. Auslander
  • B. Kostant
Article

Keywords

Unitary Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander, L., Kostant, B.: Quantization and representations of solvable Lie groups. Bull. A.M.S.73, 692–695 (1967).Google Scholar
  2. 2.
    Auslander, L., Moore, C. C.: Unitary representations of solvable Lie groups. Memoirs A.M.S.62 (1966).Google Scholar
  3. 3.
    —, Brezin, J.: Almost algebraic Lie algebras. J. of Algebra8, 295–313 (1968).Google Scholar
  4. 4.
    Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform I. Comm. Pure and Applied Math.14, 187–214 (1961).Google Scholar
  5. 5.
    Bernat, M. P.: Sur les representations unitaires des groupes de Lie resolubles. Ann. Sci. Ecole Norm. Sup.82, 37–99 (1965).Google Scholar
  6. 6.
    Brezin, J.: Unitary representation theory for solvable Lie groups. Memoirs A.M.S.79 (1968).Google Scholar
  7. 7.
    Kirillov, A. A.: Unitary representations of nilpotent Lie groups. Uspehi, Mat. Nauk.17, 57–110 (1962).Google Scholar
  8. 8.
    Kostant, B.: Quantization and unitary representations, p. 87–207, Lecture Notes in Mathematics.170. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  9. 9.
    Pukanszky, L.: On the theory of exponential groups. Trans. A.M.S.126, 487–507 (1967).Google Scholar
  10. 10.
    —: Lecons sur les representations des groupes. Monographes Soc. Math. de France. Paris: Dunod 1967.Google Scholar
  11. 11.
    Rosenlicht, M.: A remark on quotient spaces. Anais da Academic Brasileina de Ciencias35, 487–489 (1963).Google Scholar
  12. 12.
    Streater, R.F.: The representations of the oscillator group. Comm. Math. and Phys.4, 217–236 (1967).Google Scholar
  13. 13.
    Weil, A.: Varietes Kahleriennes, Actualites Scientific et Industrielle, 1267. Paris: Hermann 1958.Google Scholar
  14. 14.
    Effros, E.: A decomposition theorem for representations of aC *-algebra. Trans. A.M.S.107, 83–106 (1963).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • L. Auslander
    • 1
  • B. Kostant
    • 2
  1. 1.Department of MathematicsCity University of New YorkNew YorkUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations