Advertisement

Inventiones mathematicae

, Volume 1, Issue 4, pp 287–354 | Cite as

On the equations defining abelian varieties. I

  • D. Mumford
Article

Keywords

Abelian Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baily, W. jr.: On the theory of υ-functions, the moduli of abelian varieties, and the moduli of curves, Annals of Math.75, 342–381 (1962).Google Scholar
  2. [2]
    Cartier, P.: Unitary representations and theta functions. Proc. of 1965 AMS Summer Institute in Boulder, to appear.Google Scholar
  3. [3]
    Grothendieck, A.: Séminaire de géométrie algébrique. Inst. des Hautes Études Sci. 1960–61 (Mimeographed).Google Scholar
  4. [4]
    Grothendieck, A.: Séminaire: Schemas en groupes. Inst. des Hautes Études Sci., 1963–64 (Mimeographed).Google Scholar
  5. [5]
    Grothendieck, A., etJ. Dieudonné: Éléments de la géométrie algébrique. Publ. de l'Inst. des Hautes Études Sci., No 4, 8, 11, ....Google Scholar
  6. [6]
    Igusa, J.-I.: On the graded ring of theta-constants. Am. J. Math.86, 219–246 (1964);88, 221–236 (1966).Google Scholar
  7. [7]
    Lang, S.: Abelian varieties. New York: Interscience 1958.Google Scholar
  8. [8]
    Mackey, G.: On a theorem of Stone and von Neumann. Duke Math. J.16, 313–340 (1949).Google Scholar
  9. [9]
    Mumford, D.: Geometric invariant theory. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  10. [10]
    Mumford, D.: Curves on an algebraic surface (to appear in Annals of Math. Studies).Google Scholar
  11. [11]
    Siegel, C. Moduln abelscher funktionen. Nachrichten der Akad. Göttingen, 1964.Google Scholar
  12. [12]
    Weil, A.: Sur certaines groupes d'operateurs unitaire. Acta Math.111, 145–211 (1964).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • D. Mumford
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridge

Personalised recommendations