Numerische Mathematik

, Volume 49, Issue 6, pp 659–683 | Cite as

Theh, p andh-p versions of the finite element method in 1 dimension

Part III. The adaptiveh-p version
  • W. Gui
  • I. Babuška
Article

Summary

The paper is the third and final part in the series of three devoted to the detailed, analysis of the three basic versions of the finite element method in one dimension. The first part [1] analyzed thep-version, the second part [2] concentrated on theh andh-p version and the present third part addresses the adaptiveh-p version.

Subject Classifications

AMS(MOS): 65N30 CR:G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gui, W., Babuška, I.: Theh, p andh-p versions of, the Finite Element Method for One Dimensional Problem. Part I: The error Analysis of thep-Version Numer. Math.49, 577–612 (1986)Google Scholar
  2. 2.
    Gui, W., Babuška, I.: Theh, p andh-p Version of the Finite Element Method for One Dimensional Problem. Part II. The Error Analysis of theh andh-p Versions. Numer. Math.49, 613–657 (1986)Google Scholar
  3. 3.
    Babuška, I., Miller, A., Vogelius, M.: Adaptive Methods and Error Estimation for Elliptic Problems of Structural Mechanics. In: Adaptive Computational Methods for Patial Differential Equations (I. Babuška, J. Chandra, J.E. Flaherty, eds.) SIAM 33-56 (1983)Google Scholar
  4. 4.
    Babuška, I., Vogelius, M.: Feedback and Adaptive Finite Element Solution for One-dimensional Boundary Value Problems. Numer. Math.44, 75–107 (1984)Google Scholar
  5. 5.
    Zienkiewicz, O.C., Craig, A.W.: Adaptive Mesh Refinement and A Posteriori Error Estimation for thep Version of the Finite Element Method. In: Adaptive Computational Method for P.D.E. (I. Babuška, J. Chandra, J.E. Flaherty, eds.). SIAM 33-56 (1983)Google Scholar
  6. 6.
    Mesztenyi, C., Szymczak, a W.: FEARS User's Manual for UNIVAC 1100. Tech. Note BN991, IPST, University of Maryland, College Park 1982Google Scholar
  7. 7.
    Bank, R.E.: PLTMG User's Guide, Edition 4.0, Tech. Report Department of Mathematics, Univ. of UCSD 1985Google Scholar
  8. 8.
    Babuška, I., Dorr, M.: Error Estimate for the Combinedh andp Versions of the Finite Element Method. Numer. Math.37, 257–277 (1981)Google Scholar
  9. 9.
    Weiser, A.: Local-Mesh, Local-Order, Adaptive Finite Element Methods with A Posteriori Error Estimates for Elliptic Partial Differential Equations. Ph.D. Thesis, Yale Univ. Tech. Report 213, 1981Google Scholar
  10. 10.
    Traub, J.F., Wasilkowski, G.W., Wozniakowski, H.: Information, Uncertainty, Complexity. London: Addison-Wesley 1983Google Scholar
  11. 11.
    Wasilkowski, G.W., Wozniakowski, H.: Can adaption help on the average? Numer. Math.44, 169–190 (1984)Google Scholar
  12. 12.
    Babuška, A.: Feedback, Adaptivity and A Posteriori Estimates in Finite Element Methods: Aims, Theory and Experience. In: Accuracy Estimates and Adaptive Refinements in Finite Element Computations. (I. Babuška, O.C. Zienkiewicz, J. Gago, E.R. de Oliveira, eds.), pp. 3–24. New York: John Wiley 1986Google Scholar
  13. 13.
    Rheinbolt, W.C.: Feedback System and Adaptivity for Numerical Computations. In: Adaptive Computational Methods for Partial Differential Equations (I. Babuška, J. Chandra, J.E. Flaherty, eds.). SIAM 3–19 (1983)Google Scholar
  14. 14.
    Babuška, I.: Thep andh-p Versions of the Finite Element Method. A Survey. In: Proceedings of the Workshop on Theory and Applications of Finite Elements (R. Voigt, M.Y. Hussaini, eds.). Berlin, Heidelberg, New York: Springer 1987Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • W. Gui
    • 1
  • I. Babuška
    • 1
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations