Numerische Mathematik

, Volume 49, Issue 6, pp 577–612 | Cite as

Theh,p andh-p versions of the finite element method in 1 dimension

Part I. the error analysis of thep-version
  • W. Gui
  • I. Babuška
Article

Summary

This paper is the first one in the series of three which are addressing in detail the properties of the three basic versions of the finite element method in the one dimensional setting The main emphasis is placed on the analysis when the (exact) solution has singularity of xα-type. The first part analyzes thep-version, the second theh-version and generalh-p version and the final third part addresses the problems of the adaptiveh-p version.

Subject Classifications

AMS(MOS): 65N30 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szabo, B.A.: PROBE-Theoretical Manual Release 1.0 NOETIC Technologies Corp. St. Louis, MO 1985Google Scholar
  2. 2.
    Guo, B., Babuška, I.: Theh-p version of the finite element method. Part I: The basic approximation results; Part II: General results and applications. Comput. Mech.1, 21–41 (1986)Google Scholar
  3. 3.
    Babuška, I., Guo B.: Regularity of the Solution of Elliptic Problems with Piecewise Analytic Data. Part I: Boundary Value Problems for Linear Elliptic Equation of Second Order. Tech. Note BN-1047, Institute for, Physical Science and Technology, University of Maryland 1986Google Scholar
  4. 4.
    Babuška, I.: Theh-p version of the finite element method. A survey. In: Proceedings of the Workshop on Theory and Applications of Finite Elements (R. Voigt, M.Y. Hussaini, eds.). Berlin, Heidelberg, New York: Springer (to appear)Google Scholar
  5. 5.
    Szabo, B.A.: Implementation of Finite Element Software System withH andP Extenion Capabilites. Finite Elements Anal. Design2, 177–194 (1986)Google Scholar
  6. 6.
    Barnhart, M.A., Eisemann, J.R.: Analysis of a Stiffened Plate Detail UsingP-VErsion andH-Version Finte Element Techniques. Lect. First World Congr. Comput. Mech., Austin, Texas, UAA, 1986Google Scholar
  7. 7.
    Babuška, I., Rank, E.: An Expert-System-Like Feedback Approach in thehp-Version of the Finite Element Method. In: Finite Elements Anal. Design 3 (to appear)Google Scholar
  8. 8.
    Rank, E., Babuška, I.: An Expert System for the Optimal Mesh Design in theh-p Version of the Finite Element Method. Tech. Note BN-1052, Institute for Physical Science and Technology, University of Maryland, 1986Google Scholar
  9. 9.
    Szabo, B.A.: Computation of, Stress Field Parameters in Areas of Steep Stress Gradients. Commun. Appl. Numer. Meth.2, 133–137 (1986)Google Scholar
  10. 10.
    Babuška, I., Szabo, B., Katz, N.: Thep version of the finite element method. SIAM J. Numer. Anal.18, 515–545 (1981)CrossRefGoogle Scholar
  11. 11.
    Babuška, I., Dorr, M.: Error estimate for the combinedh andp versions of the finite element method. Numer. Math.37, 257–277 (1981)Google Scholar
  12. 12.
    Dorr, M.R.: The approximation theory for thep version of the finite element method. SIAM J. Numer. Anal21, 1181–1207 (1984)Google Scholar
  13. 13.
    Dorr, M.R.: The approximation or Solutions of Elliptic Boundary Value Problems Via thep-Version of the Finite Element Method. SIAM J. Numer. Anal.23, 58–77 (1986)Google Scholar
  14. 14.
    Babuška, I., Suri, M.: The optimal convergence rate of thep-version of the finite element method. Tech. Note BN-1045, Institute for Physical Science and Technology University of Maryland 1985. SIAM J. Numer. Anal. (to appear)Google Scholar
  15. 15.
    Babuška, I., Suri, M.: Theh-p version of the finite element method with quasiuniform meshes. Tech. Note BN-1046, Institute for Physical Science and Technology, University of Maryland 1986. RAIRO (to appear)Google Scholar
  16. 16.
    Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput.38, 67–76 (1983)Google Scholar
  17. 17.
    Canuto, C., Quarteroni, A.: Numerical analysis of spectral methods for partial differential equations, Instituto di, Analisi Numerica del C.N.A. Pavia, Italy, No. 418, 1984Google Scholar
  18. 18.
    Gottlieb, S., Orszag, A.: Numerical analysis of spectral method. SIAM CBMS, Philadelphia, 1977Google Scholar
  19. 19.
    Szego, G.: Orthogonal Polynomials. AMS Colloq. Public. Vol. 23, 4-th ed., 1975Google Scholar
  20. 20.
    Sansone, G.: Orthogonal Functions. New York. 1979Google Scholar
  21. 21.
    Suetin, P.K.: Classical Orthogonal Polynomials. Moskow, 1979 (in Russian)Google Scholar
  22. 22.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. New York: Academic Press 1975Google Scholar
  23. 23.
    Luke, Y.L.: Mathematical Functions and Their Approximation. New York: Academic Press 1975Google Scholar
  24. 24.
    Hardy, G.H., Littlewood, J.E., Pólya, G.:, Inequalities, Cambridge: University Press 1934Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • W. Gui
    • 1
  • I. Babuška
    • 1
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege Park.USA

Personalised recommendations