Numerische Mathematik

, Volume 47, Issue 2, pp 217–235

Two families of mixed finite elements for second order elliptic problems

  • Franco Brezzi
  • Jim DouglasJr.
  • L. D. Marini
Article

Summary

Two families of mixed finite elements, one based on triangles and the other on rectangles, are introduced as alternatives to the usual Raviart-Thomas-Nedelec spaces. Error estimates inL2(Ω) andH−5(Ω) are derived for these elements. A hybrid version of the mixed method is also considered, and some superconvergence phenomena are discussed.

Subject Classifications

AMS(MOS): 65N30 CR: G18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N. Brezzi, F.: Mixed and nonconforming finite element methods: Implementation, postprocessing, and error estimates. RAIRO. (To appear)Google Scholar
  2. 2.
    Brezzi, F.: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO, Anal. numér.2, 129–151 (1974)Google Scholar
  3. 3.
    Brezzi, F., Douglas, Jr., J., Marini, L.D.: Variable degree mixed methods for second order elliptic problems. (To appear)Google Scholar
  4. 4.
    Brezzi, F., Douglas, Jr., J., Marini, L.D.: Recent results on mixed methods for second order elliptic problems. (To appear)Google Scholar
  5. 5.
    Douglas, Jr., J., Roberts, J.E.: Mixed finite element methods for second order elliptic problems. Mathemática Applicada e Computacional1, 91–103 (1982)Google Scholar
  6. 6.
    Douglas, Jr., J., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput.44, 39–52 (1985)Google Scholar
  7. 7.
    Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev space, Math. Comput.34, 441–463 (1980)Google Scholar
  8. 8.
    Fraeijs de Veubeke, B.X.: Displacement and equilibrium models in the finite element method. Stress analysis, O.C. Zienkiewicz, G. Holister, eds. New York: Wiley 1965Google Scholar
  9. 9.
    Fraeijs de Veubeke, B.X.: Stress function approach, World Congress on the Finite Element Method in Structural Mechanics. Bournemouth, 1975Google Scholar
  10. 10.
    Handbook of mathematical functions, M. Abromowitz, I. Stegun, eds., Chapter 22 (O.W. Hochstrasser)Google Scholar
  11. 11.
    Johnson, C. Thomée, V.: Error estimates for some mixed finite element methods for parabolic type problems. RAIRO, Anal. numér.15, 41–78 (1981)Google Scholar
  12. 12.
    Nedelec, J.C.: Mixed finite elements in ℝ3. Numer. Math.35, 315–341 (1980)Google Scholar
  13. 13.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg36, 9–15 (1970/1971)Google Scholar
  14. 14.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. Mathematical aspects of the finite element method. Lecture Notes in Mathematics, Vol. 606. Berlin-Heidelberg-New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Franco Brezzi
    • 1
    • 2
  • Jim DouglasJr.
    • 3
  • L. D. Marini
    • 2
  1. 1.Dipartimento di Meccanica StrutturaleUniversità di PaviaPaviaItaly
  2. 2.Istituto di Analisi Numerica del C.N.R. di PaviaItaly
  3. 3.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations