Numerische Mathematik

, Volume 50, Issue 1, pp 57–81 | Cite as

A new family of mixed finite elements in ℝ3

  • J. C. Nédélec


We introduce two families of mixed finite element on conforming inH(div) and one conforming inH(curl). These finite elements can be used to approximate the Stokes' system.

Subject Classifications

AMS(MOS): 65N30 CR: G1.8 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO8, 129–151 (1974)Google Scholar
  2. 2.
    Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. (To appear in Numer. Math.)Google Scholar
  3. 3.
    Ciarlet, P.G.: The finite element method for elliptic problems, Amsterdam North Holland 1978Google Scholar
  4. 4.
    Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. Mathématical aspects in finite element method (C. de Boor ed.), pp. 125–145. New York: Academic Press 1974Google Scholar
  5. 5.
    Fortin, M.: An analysis of the convergence of mixed finite element method. RAIRO11, 341–354 (1977)Google Scholar
  6. 6.
    Nédélec, J.C.: Mixed finite element in ℝ3. Numer. Math.35, 315–341 (1980)Google Scholar
  7. 7.
    Nédélec, J.C.: Elements finis mixtes incompressibles pour l'equation de Stokes dans ℝ3. Numer. Math.39, 97–112 (1982)Google Scholar
  8. 8.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (A. Dold and B. Eckmann, eds.) Lect. Notes 606. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  9. 9.
    Thomas, J.M.: Thesis Paris (1977)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. C. Nédélec
    • 1
  1. 1.Mathématiques AppliqueéesEcole PolytechniquePlaiseauFrance

Personalised recommendations