Numerische Mathematik

, Volume 50, Issue 1, pp 57–81 | Cite as

A new family of mixed finite elements in ℝ3

  • J. C. Nédélec
Article

Summary

We introduce two families of mixed finite element on conforming inH(div) and one conforming inH(curl). These finite elements can be used to approximate the Stokes' system.

Subject Classifications

AMS(MOS): 65N30 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO8, 129–151 (1974)Google Scholar
  2. 2.
    Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. (To appear in Numer. Math.)Google Scholar
  3. 3.
    Ciarlet, P.G.: The finite element method for elliptic problems, Amsterdam North Holland 1978Google Scholar
  4. 4.
    Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. Mathématical aspects in finite element method (C. de Boor ed.), pp. 125–145. New York: Academic Press 1974Google Scholar
  5. 5.
    Fortin, M.: An analysis of the convergence of mixed finite element method. RAIRO11, 341–354 (1977)Google Scholar
  6. 6.
    Nédélec, J.C.: Mixed finite element in ℝ3. Numer. Math.35, 315–341 (1980)Google Scholar
  7. 7.
    Nédélec, J.C.: Elements finis mixtes incompressibles pour l'equation de Stokes dans ℝ3. Numer. Math.39, 97–112 (1982)Google Scholar
  8. 8.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (A. Dold and B. Eckmann, eds.) Lect. Notes 606. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  9. 9.
    Thomas, J.M.: Thesis Paris (1977)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. C. Nédélec
    • 1
  1. 1.Mathématiques AppliqueéesEcole PolytechniquePlaiseauFrance

Personalised recommendations