Numerische Mathematik

, Volume 46, Issue 4, pp 479–491 | Cite as

Computing the CS and the generalized singular value decompositions

  • Charles Van Loan
Article

Summary

If the columns of a matrix are orthonormal and it is partitioned into a 2-by-1 block matrix, then the singular value decompositions of the blocks are related. This is the essence of the “CS decomposition”. The computation of these related SVD's requires some care. Stewart has given an algorithm that uses the LINPACK SVD algorithm together with a Jacobitype “clean-up” operation on a cross-product matrix. Our technique is equally stable and fast but avoids the cross product matrix. The simplicity of our technique makes it more amenable to parallel computation on systolic-type computer architectures. These developments are of interest because a good way to compute the generalized singular value decomposition of a matrix pair (A, B) is to compute the CS decomposition of a certain orthogonal column matrix related toA andB.

Subject Classifications

AMS(MOS):65F30 CR: G1.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis, C., Kahan, W.M.: The rotation of eigenvectors by a perturbation III. SLAM J. Number. Anal.7, 1–46 (1970)CrossRefGoogle Scholar
  2. 2.
    Dongarra, J., Moler, C.B., Bunch, J.R., Stewart, G.W.: LINPACK User's Guide. Soc. Ind. Appl. Math., Philadelphia (1979)Google Scholar
  3. 3.
    Brent, R., Luk, F., Van Loan, C.: Computation of the singular value decomposition using mesh-connected processors. Cornell Comput. Sci. Techn. Report TR 82-528 Ithaca, New York 14853 (1982)Google Scholar
  4. 4.
    Brent, R., Luk, F., Van Loan, C.: Computation of the generalized singular value decomposition using mesh-connected processors. Cornell Comput. Sci. Techn. Report TR 83-563, Ithaca, New York 14853 (1983)Google Scholar
  5. 5.
    Golub, G.H., Reinsch, C.: Singular value decomposition and least squares. Numer. Math.14, 403–420 (1970)Google Scholar
  6. 6.
    Golub, G.H., Van Loan, C.: Matrix Computations. Baltimore: Johns Hopkins University Press, Md. 1983Google Scholar
  7. 7.
    Moler, C.B.: MATLAB User's Guide. Technical Report CS81-1, Dep. Comput. Sci., University of New Mexico, Albuquerque, New Mexico, 87131 (1980)Google Scholar
  8. 8.
    Paige, C.C., Saunders, M.A.: Toward a generalized singular value decomposition. SIAM J. Numer. Anal.18, 398–405 (1981)CrossRefGoogle Scholar
  9. 9.
    Speiser, J., Whitehouse, H.J.: Techniques for spatial signal processing with systolic arrays. Proc. of the Workshop on the Applicaitons of High Resolution Spatial Processing, Gulfport, MI. (1983)Google Scholar
  10. 10.
    Stewart, G.W.: On perturbation of pseudo-inverses, projections, and linear least squares problems. SIAM Rev.19, 634–662 (1977)Google Scholar
  11. 11.
    Stewart, G.W.: An algorithm for computing the CS decomposition of a partitioned orthonormal matrix. Numer. Math.40, 297–306 (1983)Google Scholar
  12. 12.
    Van Loan, C.: Generalizing the singular value decomposition. SIAM J. Numer. Anal.13, 76–83 (1976)CrossRefGoogle Scholar
  13. 13.
    Van Loan, C.: Analysis of some matrix problems using the CS decomposition. Cornell Comput. Sci. Techn. Report TR84-603, Ithaca, New York 14853 (1984)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Charles Van Loan
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations