Advertisement

Numerische Mathematik

, Volume 48, Issue 4, pp 447–462 | Cite as

On the construction of optimal mixed finite element methods for the linear elasticity problem

  • Rolf Stenberg
Numerical Approximation of Transverse Shearing Stress in Bent Plates

Summary

The mixed finite element method for the linear elasticity problem is considered. We propose a systematic way of designing methods with optimal convergence rates for both the stress tensor and the displacement. The ideas are applied in some examples.

Subject Classifications

AMS(MOS): 65N30 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N., Douglas, J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math.45, 1–22 (1984)CrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Preprint, University of Pavia, 1983Google Scholar
  3. 3.
    Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math.20, 179–192 (1973)Google Scholar
  4. 4.
    Babuška, I., Aziz, A.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with application to Partial Differential Equations (A.K. Aziz ed), pp. 5–359. New York: Academic Press 1973Google Scholar
  5. 5.
    Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput.35, 1039–1062 (1980)Google Scholar
  6. 6.
    Bercovier, M.: Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO, Anal. Numér.12, 211–236 (1978)Google Scholar
  7. 7.
    Boland, J.M., Nicolaides, R.A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal.20, 722–731 (1983)Google Scholar
  8. 8.
    Brezzi, F.: On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Ser. Rouge8, 129–151 (1974)Google Scholar
  9. 9.
    Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. REPORT-MAT-A 219, Helsinki University of Technology, 1984Google Scholar
  10. 10.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland 1978Google Scholar
  11. 11.
    Clemént, P.: Approximation by finite elements using local regularization. RAIRO Ser. Rouge9, 77–84 (1975)Google Scholar
  12. 12.
    Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Ser. Rouge7, 33–76 (1973)Google Scholar
  13. 13.
    Johnson, C., Mercier, B.: Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math.30, 103–116 (1978)Google Scholar
  14. 14.
    Karp, S.N., Karal, F.C.: The elastic-field in the neighbourhood of a crack of arbitrary angle. CPAM15, 413–421 (1962)Google Scholar
  15. 15.
    Mansfield, L.: Finite element subspaces with optimal rate of convergence for the stationary Stokes problem. RAIRO, Anal. Numér.16, 49–66 (1982)Google Scholar
  16. 16.
    Mirza, F.A., Olson, M.D.: The mixed finite element method in plane elasticity. Int. J. Numer. Methods Eng.15, 273–290 (1980)Google Scholar
  17. 17.
    Pitkäranta, J., Stenberg, R.: Analysis of some mixed finite element methods for plane elasticity equations. Math. Comput.41, 399–423 (1983)Google Scholar
  18. 18.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Proceedings of the Symposium on the Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics 606, pp. 292–315. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  19. 19.
    Stenberg, R.: Analysis of mixed finite element methods for the Stokes problem: A unified approach. Math. Comput.42, 9–23 (1984)Google Scholar
  20. 20.
    Williams, M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech.19, 526–528 (1952)Google Scholar
  21. 21.
    Zienkiewicz, O.C.: The Finite Element Method, 3rd edition. New York: McGraw-Hill 1977Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Rolf Stenberg
    • 1
  1. 1.Institute of MathematicsHelsinki University of TechnologyEspoo 15Finland

Personalised recommendations