Numerische Mathematik

, Volume 46, Issue 3, pp 323–337 | Cite as

Attractive cycles in the iteration of meromorphic functions

  • James Lucien Howland
  • Rémi Vaillancourt


The existence of attractive cycles constitutes a serious impediment to the solution of nonlinear equations by iterative methods. This problem is illustrated in the case of the solution of the equationz tanz=c, for complex values ofc, by Newton's method. Relevant results from the theory of the iteration of rational functions are cited and extended to the analysis of this case, in which a meromorphic function is iterated. Extensive numerical results, including many attractive cycles, are summarized.

Subject Classifications

AMS(MOS): 30D05, 30-04, 65E05, 65H05 CR: 5.15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors, L.: Complex analysis. (3rd ed.) New York: McGraw-Hill 1979Google Scholar
  2. 2.
    Baker, I.N.: Limit functions and sets of non-normality in iteration theory. Ann. Acad. Sci. Fenn., Ser. A I, 467 (1970)Google Scholar
  3. 3.
    Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat.6, 103–144 (1965)Google Scholar
  4. 4.
    Brooker, R.A.: The solution of algebraic equations on the EDSAC. Proc. Cambridge Philos. Soc48, 255–270 (1952)Google Scholar
  5. 5.
    Bussey, H.E.: Dielectric measurements in a shielded open circuit coaxial line. IEEE Trans. Instrum. Meas. IM-29, 120–124 (1980)Google Scholar
  6. 6.
    Cremer, H.: Über die Iteration rationaler Funktionen. Jahresber. Dtsch. Math.-Ver.33, 185–210 (1925)Google Scholar
  7. 7.
    Eckmann, J.P.: Savez-vous résoudrez 3−1? Rech14, 260–262 (1983)Google Scholar
  8. 8.
    Fatou, P.: Sur les équations fonctionnelles. I. Bull. Soc. Math. Fr.47, 161–271 (1919)Google Scholar
  9. 9.
    Fatou, P.: Sur les équations fonctionnelles, II et III. Bull. Soc. Math. Fr.48, 33–94 and 208–314 (1920)Google Scholar
  10. 10.
    Hofstadter, D.R.: Strange attractors: Mathematical patterns delicately poised between order and chaos. Sci. Am.245, 22–43 (November 1981)Google Scholar
  11. 11.
    Hurwitz, A.: Sur les points critiques des fonctions inverses, I et II. C.R. Acad. Sci., Paris143, 877–879 (1906);144, 63–64 (1907)Google Scholar
  12. 12.
    Iversen, F.: Recherches sur les fonctions inverses des fonctions méromorphes. Thèse. Helsinki (1914)Google Scholar
  13. 13.
    Julia, G.: Mémoire sur l'itération des fonctions rationelles. J. Math. Pures Appl., IX. Ser. 8,1, 47–245 (1918)Google Scholar
  14. 14.
    Lindelöf, E.: Le calcul des résidus. New York: Chelsea (1947)Google Scholar
  15. 15.
    Mandelbrot, B.B.: The fractal geometry of nature. Ch. 19 and 20. New York: Freeman (1983)Google Scholar
  16. 16.
    Markushevich, A.I.: Theory of functions of a complex variable. 1–3. Englewood Cliffs, N.J.: Prentice-Hall (1965)Google Scholar
  17. 17.
    Montel, P.: Leçons sur les familles normales de fonctions analytiques et leurs applications. Ch. VIII. Paris: Gauthier-Villars (1927)Google Scholar
  18. 18.
    Montel, P.: Leçons sur les récurrences et leurs applications. Ch. III, XI, XII. Paris: Gauthier-Villars (1957)Google Scholar
  19. 19.
    Overholt, K.J.: Extended Aitken acceleration. BIT5, 122–132 (1965)Google Scholar
  20. 20.
    Rådström, H.: On the iteration of analytic functions. Math. Scand.1, 85–92 (1953)Google Scholar
  21. 21.
    Smyth, W.F.: The construction of rational iterating functions. Math. Comput.32, 811–827 (1978)Google Scholar
  22. 22.
    Smyth, W.F.: Constructing rational iterating functions without attractive cycles. M. Sc. Thesis. Ottawa: University of Ottawa (1983)Google Scholar
  23. 23.
    Tambs Lyche, R.: Une formule d'itération. Bull. Soc. Math. Fr.55, 102–113 (1927)Google Scholar
  24. 24.
    Tran, V.N., Stuchly, S., Stuchly, M.: Measurement of dielectric properties of biological or agricultural materials. Proc. 19th Intern. Elect. Convent. (Sydney, Inst. Radio Elec. Eng., Australia), pp. 5–9 (Sept. 1983), pp. 595–597 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • James Lucien Howland
    • 1
  • Rémi Vaillancourt
    • 1
  1. 1.Department of MathematicsUniversity of OttawaOttawaCanada

Personalised recommendations