Numerische Mathematik

, Volume 48, Issue 5, pp 499–523 | Cite as

On the rate of convergence of the preconditioned conjugate gradient method

  • Owe Axelsson
  • Gunhild Lindskog
Article

Summary

We derive new estimates for the rate of convergence of the conjugate gradient method by utilizing isolated eigenvalues of parts of the spectrum. We present a new generalized version of an incomplete factorization method and compare the derived estimates of the number of iterations with the number actually found for some elliptic difference equations and for a similar problem with a model empirical distribution function.

Subject Classifications

AMS(MOS): 65F10 CR: G1.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, L.: SSOR preconditioning of Toeplitz matrices. Thesis, Chalmers University of Technology, Göteborg, Sweden, 1976Google Scholar
  2. 2.
    Axelsson, O.: A class of iterative methods for finite element equations. Comput. Methods Appl. Mech. Eng.9, 123–137 (1976)Google Scholar
  3. 3.
    Axelsson, O.: A general incomplete block-matrix factorization method. Linear Algebra Appl. (to appear)Google Scholar
  4. 4.
    Axelsson, O., Brinkkemper, S., Il'in, V.P.: On some versions of incomplete block-matrix factorization iterative methods. Linear Algebra Appl.58, 3–15 (1984)Google Scholar
  5. 5.
    Axelsson, O., Lindskog, G.: On the eigenvalue distribution of a class of preconditioning methods. Report 3, Numerical Analysis Group, Department, of Computer Sciences, Chalmers University of Technology Göteborg, Sweden 1985Google Scholar
  6. 6.
    Greenbaum, A.: Comparison of splittings used with the conjugate gradient algorithm. Numer. Math.33, 181–194 (1979)Google Scholar
  7. 7.
    Gustafsson, I.: Modified Incomplete Cholesky (MIC) Methods. In: Preconditioning Methods, Theory and Applications (Evans, D.J., ed.), pp. 265–293. New York: Gordon and Breach Science Publishers 1983Google Scholar
  8. 8.
    Jennings, A.: Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method. JIMA20, 61–72 (1977)Google Scholar
  9. 9.
    Kaniel, S.: Estimates for some computational techniques in linear algebra. Math. Comput.20, 369–378 (1966)Google Scholar
  10. 10.
    Kershaw, D.: The incomplete Cholesky conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys.26, 43–65 (1978)Google Scholar
  11. 11.
    Saff, E.B., Varga, R.S.: On incomplete polynomials. In: Numerische Methoden der Approximationstheorie, Band 4. (L. Collatz, G. Meinardus, H. Werner, eds.), pp. 281–298. ISNM 42, Basel: Birkhäuser Verlag 1978Google Scholar
  12. 12.
    Szegö, G.: Orthogonal Polynomials. Americal Mathematical Society Colloquium Publications Volume XXIII American Mathematical Society, Providence, Rhode Island, 1939Google Scholar
  13. 13.
    van der Vorst, H.A., van der Sluis, A.: The rate of convergence of conjugate gradients. Preprint Nr. 354, Department of Mathematics, University of Utrecht, 1984Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Owe Axelsson
    • 1
  • Gunhild Lindskog
    • 2
  1. 1.Department of Computer SciencesLund UniversityLundSweden
  2. 2.Department of Computer SciencesChalmers University of TechnologyGöteborgSweden

Personalised recommendations