Inventiones mathematicae

, Volume 66, Issue 2, pp 325–341

Réduction modulopn des sous-ensembles analytiques fermés deZpN

  • Joseph Oesterlé
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Abh] Abhyankar, S.S.: Local Analytic Geometry. New York and London: Academic Press 1964Google Scholar
  2. [AC VIII] Bourbaki, N.: Algèbre commutative, chapitre 8, à paraîtreGoogle Scholar
  3. [Ha] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, Berlin Heidelberg New York: Springer-Verlag 1977Google Scholar
  4. [Ro] Robba, P.: Lemmes de Schwarz et lemmes d'approximationsp-adiques en plusieurs variables. Invent. math.48, 245–277 (1978)Google Scholar
  5. [Sch] Schappacher, N.: Some remarks on a theorem of M.J. Greenberg. Proceedings of the Queen's Number Theory Conference, Kingston, 1979Google Scholar
  6. [Se 1] Serre, J-P.: Algèbre Locale, Multiplicités. Lecture Notes in Mathematics. Vol. 11, Berlin Heidelberg New York: Springer-Verlag 1965Google Scholar
  7. [Se 2] Serre, J-P: Quelques applications du théorème de densité de Chebotarev. Publ. Math. I.H.E.S., vol. 54, 1981Google Scholar
  8. [Ta] Tate, J.: Rigid Analytic Spaces. Invent. math.12, 257–289 (1971)Google Scholar
  9. [VAR] Bourbaki, N.: Variétés Différentielles et analytiques Fascicule de Résultats. Paris: Hermann 1971Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Joseph Oesterlé
    • 1
  1. 1.E.R.A. 589Paris Cedex 05France

Personalised recommendations