Inventiones mathematicae

, Volume 66, Issue 2, pp 277–286 | Cite as

Quillen stratification for modules

  • George S. Avrunin
  • Leonard L. Scott
Article

Keywords

Stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alperin, J.L.: letter to L.L. Scott, June 29, 1980Google Scholar
  2. 2.
    Alperin, J.L., Evens, L.: Representations, resolutions, and Quillen's dimension theorem. J. Pure Appl. Algebra22, 1–9 (1981)Google Scholar
  3. 3.
    Alperin, J.L., Evens, L.: Varieties and elementary abelian groups. (to appear)Google Scholar
  4. 4.
    Avrunin, G.S.: Annihilators of cohomology modules. J. Algebra69, 150–154 (1981)Google Scholar
  5. 5.
    Avrunin, G.S., Scott, L.L.: A Quillen stratification theorem for modules. Bull. Amer. Math. Soc.6, 75–78 (1982)Google Scholar
  6. 6.
    Carlson, J.F.: Complexity and Krull dimension, Proceeding of the International Congress on Representation of Algebras, Ill, 1981Google Scholar
  7. 7.
    Carlson, J.F.: The complexity and varieties of modules. Proc. Oberwolfach Conf. on Integral Representation and Applications. Lecture Notes in Math., Vol. 882, pp. 415–429. Berlin-New York: Springer 1981Google Scholar
  8. 8.
    Carlson, J.F.: Dimensions of modules and their restriction over modular group algebras. J. Algebra69, 95–104 (1981)Google Scholar
  9. 9.
    Carlson, J.F.: The varieties and the cohomology ring of a module. (to appear)Google Scholar
  10. 10.
    Chouinard, L.G.: Projectivity and relative projectivity over group rings. J. Pure Appl. Algebra7, 287–302 (1976)Google Scholar
  11. 11.
    Dade, E.C.: Endo-permutation module overp-groups, II. Ann. of Math.108, 317–346 (1978)Google Scholar
  12. 12.
    Demazure, M., Gabriel, P.: Groups algébriques, vol. I. Amsterdam: North Holland 1970.Google Scholar
  13. 13.
    Evens, L.: The cohomology ring of a finite group. Trans. Amer. Math. Soc.101, 224–239 (1961)Google Scholar
  14. 14.
    Green, J.A.: A transfer theorem for modular representations. J. Algebra1, 73–84 (1964)Google Scholar
  15. 15.
    Green, J.A.: Axiomatic representation theory for finite groups. J. Pure Appl. Algebra1, 41–77 (1971)Google Scholar
  16. 16.
    Grothendieck, A.: Foncteurs fibres, supports étude cohomologique des morphismes finis, in SGA 4. Lecture Notes in Mathematics, vol. 270. Berlin: Springer 1972Google Scholar
  17. 17.
    Hartshorne, R.: Algebraic geometry. New York: Springer 1977Google Scholar
  18. 18.
    Kroll, O.: Complexity and elementary abelianp-groups. Ph.D. thesis, University of Chicago 1980Google Scholar
  19. 19.
    MacLane, S.: Homology, Berlin: Springer 1963Google Scholar
  20. 20.
    Quillen, D.: A cohomological criterion forp-nilpotence. J. Pure Appl. Algebra1, 361–372 (1971)Google Scholar
  21. 21.
    Quillen, D.: The spectrum of an equivariant cohomology ring, I. Ann. of Math.94, 549–572 (1971)Google Scholar
  22. 22.
    Quillen, D.: The spectrum of an equivariant cohomology ring, II. Ann. of Math.94, 573–602 (1971)Google Scholar
  23. 23.
    Quillen, D., Venkov, B.B.: Cohomology of finite groups and elementary abelian subgroups. Topology11, 317–318 (1972)Google Scholar
  24. 24.
    Serre, JP: Sur la dimension cohomologique des groupes profinis. Topology3, 413–420 (1965)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • George S. Avrunin
    • 1
  • Leonard L. Scott
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations