Advertisement

Inventiones mathematicae

, Volume 91, Issue 2, pp 221–251 | Cite as

L'homologie cyclique des algèbres enveloppantes

  • Christian Kassel
Article

Summary

For any Lie algebra g, we compute the Hochschild and cyclic homology groups of its enveloping algebra in terms of the canonical Lie-Poisson structure on the dual g*. We also discuss the collapsing of Connes spectral sequence for cyclic homology, particularly in the case of semisimple Lie algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Berezin, F.A.: Quelques remarques sur l'algèbre enveloppante d'une algèbre de Lie (en russe). Funkt. Anal.1, 1–14 (1967)Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et algèbres de Lie. Chap. 2 et 3, Paris, Hermann 1972Google Scholar
  3. 3.
    Brylinski, J.L.: A differential complex for Poisson manifolds. Prépublication IHES, mars 1986Google Scholar
  4. 4.
    Brylinski, J.L., Getzler, E.: The homology of algebras of pseudo-differential symbols and the non-commutative residue. Prépublication 1987.Google Scholar
  5. 5.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton, Princeton University Press 1956Google Scholar
  6. 6.
    Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc.63, 85–124 (1948)Google Scholar
  7. 7.
    Connes, A.: Non-commutative differential geometry. Publ. Math. IHES62, 41–144 (1986)Google Scholar
  8. 8.
    Feigin, B.L., Tsygan, B.L.: Cohomology of Lie algebras of generalized Jacobi matrices. Funct. Anal. Appl.17, 153–155 (1983)Google Scholar
  9. 9.
    Feldman, G.L.: Global dimension of rings of differential operators. Trans. Moscow Math. Soc. Issue1, 123–147 (1982)Google Scholar
  10. 10.
    Goodwillie, T.G.: Cyclic homology, derivations and the free loopspace. Topology24, 187–215 (1985)Google Scholar
  11. 11.
    Goodwillie, T.G.: On the general linear group and Hochschild homology. Ann. Math.121, 383–407 (1985)Google Scholar
  12. 12.
    Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. IHES29, 93–103 (1966)Google Scholar
  13. 13.
    Kassel, C.: A Künneth formula for the cyclic cohomology of ℤ/2-graded algebras. Math. Ann.275, 683–699 (1986)Google Scholar
  14. 14.
    Kassel, C.: Cyclic homology, comodules and mixed complexes. J. Algebra107, 195–216 (1987)Google Scholar
  15. 15.
    Kassel, C.: Algèbres enveloppantes et homologie cyclique. C.R. Acad. Sci. Paris303, 779–802 (1986)Google Scholar
  16. 16.
    Kassel, C.: Quantification de formes différentielles. Prépublication, octobre 1986Google Scholar
  17. 17.
    Kassel, C., Mitschi, C.: Algèbres d'opérateurs différentiels et cohomologie de de Rham (En préparation)Google Scholar
  18. 18.
    Koszul, J.L.: Crochet de Schouten-Nijenhuis et cohomologie. Colloque Elie Cartan, Astérisque, hors série (1985), pp. 257–271Google Scholar
  19. 19.
    Lichnérowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differ. Geom.12, 253–300 (1977)Google Scholar
  20. 20.
    Loday, J.L., Quillen, D.: Cyclic homology and the Lie algebra homology of matrices. Comment. Math. Helv.59, 565–591 (1984)Google Scholar
  21. 21.
    Masuda, T.: Dualité pour le produit croisé différentiel et sa cohomologie cyclique périodique. C.R. Acad. Sci. Paris301, 551–553 (1985)Google Scholar
  22. 22.
    Masuda, T.: Communication personnelle (décembre 1985)Google Scholar
  23. 23.
    Nuss, P.: L'homologie cyclique des algèbres enveloppantes des algèbres de Lie de dimension trois (en préparation)Google Scholar
  24. 24.
    Quillen, D.: Higher algebraicK-theory, I. AlgebraicK-Theory I. (Lect. Notes Math. vol. 341, pp. 85–147) Berlin Heidelberg New York: Springer 1973Google Scholar
  25. 25.
    Rinehart, G.: Differential forms on general commutative algebras. Trans. Am. Math. Soc.108, 195–222 (1963)Google Scholar
  26. 26.
    Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Funct. Anal. Appl.16, 263–270 (1982)Google Scholar
  27. 27.
    Sridharan, R.: Filtered algebras and representations of Lie algebras. Trans. Am. Math. Soc.100, 530–550 (1961)Google Scholar
  28. 28.
    Wodzicki, M.: Cyclic homology of differential operators. Duke Math. J.54, 641–647 (1987)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Christian Kassel
    • 1
  1. 1.Unité Associée au CNRS No 1Institut de Recherche Mathématique AvancéeStrasbourg CédexFrance

Personalised recommendations