Inventiones mathematicae

, Volume 69, Issue 3, pp 411–435 | Cite as

Fourier transforms of nilpotently supported invariant functions on a simple lie algebra over a finite field

  • N. Kawanaka
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvis, D.: Duality in the character ring of a finite Chevalley group. In: Proc. of the Santa Cruz Conference on Finite Groups (Proc. Symp. Pure Math.37) pp. 353–357. Providence: Amer. Math. Soc. 1980Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et algebres de Lie, Chapter 4, 5, 6., Paris: Hermann 1968Google Scholar
  3. 3.
    Curtis, C.W.: Truncation and duality in the character ring of a finite group of Lie type. J. of Alg.62, 320–332 (1980)Google Scholar
  4. 4.
    Deligne, P., Lusztig, G.: Duality for representations of a reductive group over a finite, field. J. of Alg.74, 284–291 (1982)Google Scholar
  5. 5.
    Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Amer. Math. Soc. Transl. Ser. 2,6, 111–245 (1957)Google Scholar
  6. 6.
    Elkington, G.B.: Centralizers of unipotent elements in semisimple algebraic groups. J. of Alg.23, 137–163 (1972)Google Scholar
  7. 7.
    Halmos, P.R., Vaughan, H.E.: The marriage problem. Amer. J. Math.72, 214–215 (1950)Google Scholar
  8. 8.
    Harish-Chandra: Eisenstein Series over Finite Fields. In: Functional Analysis and Related Fields, pp. 76–88. Berlin- Heidelberg-New York: Springer 1970Google Scholar
  9. 9.
    Kawanaka, N.: Fourier transforms of nilpotently supported invariant functions on a finite simple Lie algebra. Proc. Japan Acad.57, 461–464 (1981)Google Scholar
  10. 10.
    Kazhdan, D.A., Proof of Springer's hypothesis. Israel J. Math.28, 272–286 (1977)Google Scholar
  11. 11.
    Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group.. Amer. J. Math.81, 973–1032 (1959)Google Scholar
  12. 12.
    Lusztig, G.: Representations of Finite Chevalley Groups. C.B.M.S. Regional Conference Series in Math.39. Amer. Math. Soc. 1978Google Scholar
  13. 13.
    Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. London Math. Soc. (2)19, 41–52 (1979)Google Scholar
  14. 14.
    Rosenlicht, M.: On quotient varieties and the affine embedding of certain homogeneous spaces. Trans. Amer. Math. Soc.101, 211–223 (1961)Google Scholar
  15. 15.
    Shoji, T.: On the Green polynomials of a Chevalley group of typeF 4. Comm. Algebra10, 505–543 (1982)Google Scholar
  16. 16.
    Springer, T.A.: The Unipotent Variety of a Semi-simple Group. In: Bombay Colloq. on algebraic geometry, pp. 373–391. London: Oxford University Press 1969Google Scholar
  17. 17.
    Springer, T.A.: Cusp forms for finite groups. In: Seminar on algebraic groups and related finite groups. Lecture Notes in Mathematics, vol.131, Part C. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  18. 18.
    Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math.36, 173–203 (1976)Google Scholar
  19. 19.
    Springer, T.A.: The Steinberg function of a finite Lie algebra. Invent. Math.58, 211–223 (1980)Google Scholar
  20. 20.
    Springer, T.A., Steinberg, R.: Conjugacy classes. In: Seminar on algebraic groups and related finite groups. Lecture Notes in Mathematics. vol.131, Part E. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  21. 21.
    Steinberg, R.: Lectures on Chevalley groups. Yale University 1967Google Scholar
  22. 22.
    Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. no.80. (1968)Google Scholar
  23. 23.
    Tits, J.: Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics. vol.386. Berlin-Heidelberg-New York: Springer 1974Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • N. Kawanaka
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations