Inventiones mathematicae

, Volume 69, Issue 3, pp 331–346 | Cite as

Torsion free subgroups of fuchsian groups and tessellations of surfaces

  • Allan L. Edmonds
  • John H. Ewing
  • Ravi S. Kulkarni


Fuchsian Group Free Subgroup Torsion Free Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bundgaard, S., Nielsen, J.: On normal subgroups with finite index inF-groups. Mat. Tidsskrift B p. 56 (1951)Google Scholar
  2. 2.
    Coxeter, H.S.M., Moser, H.W.O.J.: Generators and relations for discrete groups, 4th ed. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  3. 3.
    Dyck, W.: Gruppentheoretische Studien. Math. Ann.20, 1–45 (1882)Google Scholar
  4. 4.
    Edmonds, A., Ewing, J., Kulkarni, R.: Regular tessellations of surfaces and (p, q, 2) triangle groups. Annals of Math.116, 113–132 (1982)Google Scholar
  5. 5.
    Fenchel, W.: Bemarkingen om endelige gruppen af abbildungsklasser. Mat. Tidsskrift B 90–95 (1950)Google Scholar
  6. 6.
    Feuer, R.: Torsion free subgroups of triangle groups. Proc. Amer. Math. Soc.30, 235–240 (1971)Google Scholar
  7. 7.
    Fox, R.: On Fenchel's conjecture aboutF-groups. Mat. Tidsskrift B 61–65 (1952)Google Scholar
  8. 8.
    Harvey, W.: Discrete groups and automorphic functions. New York: Academic Press 1977Google Scholar
  9. 9.
    Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann.41, 403–442 (1893)Google Scholar
  10. 10.
    Jones, G., Singerman, D.: Theory of maps on orientable surfaces. Proc. London Math. Soc.37 (3), 273–307 (1978)Google Scholar
  11. 11.
    Magnus, W.: Noneuclidean Tesselations and their Groups. New York: Academic Press 1974Google Scholar
  12. 12.
    Mennicke, J.: Eine Bemerkung über Fuchssche Gruppen. Invent. Math.2, 301–305 (1967); Corrigendum, ibid. Mennicke, J.: Eine Bemerkung über Fuchssche Gruppen. Invent. Math.6, 106 (1968)Google Scholar
  13. 13.
    Milnor, J.: On the 3-dimensional Brieskorn manifoldsM(p, q, r), in Knots, Groups, and 3-Manifolds, papers dedicated to the memory of R.H. Fox (ed. L.P. Neuwirth), Ann. of Math. Study84, Princeton University Press, Princeton, 1975, pp. 175–225Google Scholar
  14. 14.
    Nielsen, J.: Kommutatorgruppen for det frie produkt af cykliske grupper. Mat. Tidsskrift B 49 (1948)Google Scholar
  15. 15.
    Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  16. 16.
    Selberg, A.: On discontinuous groups in higher-dimensional symmetric spaces, in Contributions to Function Theory, Tata Institute of Fundamental Research, Bombay, 1960, pp. 161–183Google Scholar
  17. 17.
    Wall, C.T.C.: Rational Euler characteristics. Proc. Camb. Phil. Soc.57, 182–183 (1961)Google Scholar
  18. 18.
    Zieschang, H., Vogt, E., Coldeway, H.-D.: Flächen und ebene diskontinuierliche Gruppen. Lecture Notes in Math. vol. 122. Berlin-Heidelberg-New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Allan L. Edmonds
    • 1
  • John H. Ewing
    • 1
  • Ravi S. Kulkarni
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations