Advertisement

Inventiones mathematicae

, Volume 72, Issue 2, pp 221–239 | Cite as

The second homology group of the mapping class group of an orientable surface

  • John Harer
Article

Keywords

Class Group Mapping Class Homology Group Mapping Class Group Orientable Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birman, J.: Braids, links, and mapping class groups. Ann. of Math. Studies 82, Princeton Univ. Press, Princeton 1975Google Scholar
  2. 2.
    Dehn, M.: Die Gruppe der Abbildungsklassen. Acta Math.69, 135–206 (1938)Google Scholar
  3. 3.
    Earle, C.J., Eells, J.: The diffeomorphism group of a compact Riemann surface. Bull. AMS73, 557–559 (1967)Google Scholar
  4. 4.
    Harer, J.: Pencils of Curves on 4-Manifolds. Ph.D. Thesis, University of California, Berkeley 1979Google Scholar
  5. 5.
    Hatcher, A., Thurston, W.: A presentation for the mapping class group of a closed orientable surface. Top.19, 221–237 (1980)Google Scholar
  6. 6.
    Meyer, W.: Die Signatur von Flächenbündeln. Math. Ann.201, 239–264 (1973)Google Scholar
  7. 7.
    Mumford, D.: Abelian quotients of the Teichmuller modular group. Journal d'Analyse Mathematique18, 227–244 (1967)Google Scholar
  8. 8.
    Neumann, W.: Signature related invariants of manifolds. I. Monodromy and γ-Invariants. Top.18, 239–264 (1973)Google Scholar
  9. 9.
    Powell, J.: Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc.68, No. 3, 347–350 (1978)Google Scholar
  10. 10.
    Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. Preprint 1982Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • John Harer
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations