Inventiones mathematicae

, Volume 64, Issue 3, pp 489–516

Zero estimates on group varieties I

  • D. W. Masser
  • G. Wüstholz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsotti, I.: A note on abelian varieties. Rend. Circ. Mat. Palermo2, 236–257 (1953)Google Scholar
  2. 2.
    Barsotti, I.: Structure theorems for group varieties. Annali di Mat.38, 77–119 (1955)Google Scholar
  3. 3.
    Brownawell, W.D., Masser, D.W.: Multiplicity estimates for analytic functions I. J. Reine Angew. Math.314, 200–216 (1980)Google Scholar
  4. 4.
    Brownawell, W.D., Masser, D.W.: Multiplicity estimates for analytic functions II. Duke Math. J.47, 273–295 (1980)Google Scholar
  5. 5.
    Gröbner, W.: Moderne algebraische Geometrie-die idealtheoretischen Grundlagen. Wien und Innsbruck: Springer 1949Google Scholar
  6. 6.
    Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry Vol. 2. Cambridge 1952Google Scholar
  7. 7.
    Kolchin, E.R.: Algebraic groups and algebraic independence. Amer. J. Math.90, 1151–1164 (1968)Google Scholar
  8. 8.
    Masser, D.W.: Small values of the quadratic part of the Néron-Tate height. Progress in Math. Vol 12 (pp. 213–222). Boston-Basel-Stuttgart: Birkhäuser 1981Google Scholar
  9. 9.
    Masser, D.W.: On polynomials and exponential polynomials in several complex variables. Inventiones Math.63, 81–95 (1981)Google Scholar
  10. 10.
    Masser, D.W., Wüstholz, G.: Algebraic independence properties of values of elliptic functions. To appear in the proceedings of the Exeter Journées Arithmétiques 1980Google Scholar
  11. 11.
    Mumford, D.: Algebraic geometry I-complex projective varieties. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  12. 12.
    Nesterenko, J.V.: Estimates for the orders of zeroes of functions of a certain class and their applications in the theory of transcendental numbers (in Russian). Izv. Akad. Nauk. USSR, Ser. Math.41, 253–284 (1977); Math. USSR Izv.11, 239–270 (1977)Google Scholar
  13. 13.
    Seidenberg, A.: Constructions in algebra. Trans. Amer. Math. Soc.197, 273–313 (1974)Google Scholar
  14. 14.
    Waldschmidt, M.: Nombres transcendants et groupes algébriques. Astérisque69–70 (1979)Google Scholar
  15. 15.
    Waldschmidt, M.: Transcendance et exponentielles en plusieurs variables. Inventiones Math.63, 97–127 (1981)Google Scholar
  16. 16.
    Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge 1965Google Scholar
  17. 17.
    Chudnovsky, G.V.: Degrés de sous-variétés contenant des ‘cubes’ de groupes algébriques. C.R. Acad. Sci. Paris291A, 117–119 (1980)Google Scholar
  18. 18.
    Hartshorne, R.: Algebraic geometry. New York-Heidelberg-Berlin: Springer 1977Google Scholar
  19. 19.
    Borel, A.: Linear algebraic groups. New York: W.A. Benjamin 1969Google Scholar
  20. 20.
    Zariski, O., Samuel, P.: Commutative algebra Vol. II. New York: Springer 1968Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • D. W. Masser
    • 1
  • G. Wüstholz
    • 2
  1. 1.Department of MathematicsUniversity of NottinghamNottinghamUK
  2. 2.Gesamthochschule WuppertalWuppertalFederal Republic of Germany

Personalised recommendations