Inventiones mathematicae

, Volume 64, Issue 3, pp 455–470 | Cite as

Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer

  • Karl Rubin


Complex Multiplication Elliptic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arthaud, N.: On Birch and Swinnerton-Dyer's conjecture for elliptic curves with complex multiplication. I. Comp. Math.37, 209–232 (1978)Google Scholar
  2. 2.
    Arthaud, N.: Thesis, Stanford University (1978)Google Scholar
  3. 3.
    Bertrand, D.: Problèmes arithmétiques liés à l'exponentiellep-adique sur les courbes elliptiques. C.R. Acad. Sci. Paris Sér. A282, 1399–1401 (1976)Google Scholar
  4. 4.
    Brumer, A.: On the units of algebraic number fields. Mathematika14, 121–124 (1967)Google Scholar
  5. 5.
    Cassels, J.W.S.: Arithmetic on curves of genus 1 (VIII). J. Reine Angew. Math.217, 180–199 (1965)Google Scholar
  6. 6.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223–251 (1977)Google Scholar
  7. 7.
    Coates, J., Wiles, A.: Onp-adicL-functions and elliptic units. J. Austral. Math. Soc.26, 1–25 (1978)Google Scholar
  8. 8.
    Coleman, R.: Division values in local fields. Invent. Math.53, 91–116 (1979)Google Scholar
  9. 9.
    Goldstein, C., Schappacher, N.: Series d'Eisenstein et fonctionsL de courbes elliptiques à multiplication complexe. To appear in J. Reine Angew. Math.Google Scholar
  10. 10.
    Gross, B.: Arithmetic on Elliptic Curves with Complex Multiplication. Lect. Notes Math.776, New York: Springer (1980)Google Scholar
  11. 11.
    Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. of Math.81, 380–387 (1965)Google Scholar
  12. 12.
    Robert, G.: Unites Elliptiques. Bull. Soc. Math. France, Suppl., Memoire36 (1973)Google Scholar
  13. 13.
    Serre, J.P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492–517 (1968)Google Scholar
  14. 14.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ. Press, Princeton (1971)Google Scholar
  15. 15.
    Shimura, G.: On the zeta-function of an abelian variety with complex multiplication. Ann. of Math.94, 504–533 (1971)Google Scholar
  16. 16.
    Tate, J.: Algorithm for determining the type of a singular fibre in an elliptic pencil. In: Modular Forms of One Variable (IV). Lect. Notes Math.476, New York: Springer (1975)Google Scholar
  17. 17.
    Weil, A.: Adeles and Algebraic Groups. Inst. for Adv. Study, Princeton (1961)Google Scholar
  18. 18.
    Wiles, A.: Higher explicit reciprocity laws. Ann. of Math.107, 235–254 (1978)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations