Advertisement

Inventiones mathematicae

, Volume 64, Issue 3, pp 387–410 | Cite as

Kazhdan-Lusztig conjecture and holonomic systems

  • J. L. Brylinski
  • M. Kashiwara
Article

Keywords

Holonomic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Bernstein-Gelfand-Gelfand: Differential operators on the base affine space and a study ofG-module, In: Lie groups and their representations, Budapest 1971. Ed. par I.M. Gelfand, Wiley, New York, pp. 39–64, 1975Google Scholar
  2. 2.
    Deligne, P.: Letter to D. Kazhdan and G. Lusztig, Bures-sur-Yvette, April 20, 1979Google Scholar
  3. 3.
    Demazure, M.: Desingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup.7, 53–88 (1974)Google Scholar
  4. 4.
    Kashiwara, M.: Systèmes d'équations micro-différentielles. Cours rédigé par Teresa Monteiro-Fernandes, Prépublications mathématiques de l'Université de Paris-Nord (1977)Google Scholar
  5. 5.
    Kashiwara, M.: Faisceaux constructibles et systèmes holonomes d'équations aux dérivées partielles linéaires à points singuliers réguliers, Exposé au Séminaire Goulaouic-Schwartz 1979–80, Ecole Polytechnique, PalaiseauGoogle Scholar
  6. 6.
    Kashiwara, M., Kawai, T.: On the holonomic systems of linear differential equations I, II, III. To appearGoogle Scholar
  7. 7.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Inventiones math.53, 165–184 (1979)Google Scholar
  8. 8.
    Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. Proc. Symp. Pure Math.36, 185–203 (1980)Google Scholar
  9. 9.
    Kempf, G.: The geometry of homogeneous spaces versus induced representationsGoogle Scholar
  10. 10.
    Kempf, G.: The Grothendieck-Cousin complex of an induced representation. Advances in Math.29, 310–396 (1978)Google Scholar
  11. 11.
    Poincaré, H.: Thèse, Oeuvres I, Paris, 1928Google Scholar
  12. 12.
    Verdier, J.L.: Exposé VI au séminaire de Géométrie Analytique de l'E.N.S., 1974–75, Astérisque No. 36-37Google Scholar
  13. 13.
    Verma, D.N.: Structure of certain induced representations of complex semi-simple Lie algebras. Bull. A.M.S.74, 160–166 (1968)Google Scholar
  14. 14.
    Sullivan, D.: Combinatorial invariants of analytic spaces in Proceedings of the Liverpool Singularities Symposium I. Springer Lecture Notes192, 165–168 (1971)Google Scholar
  15. 15.
    Mebkhout, Z.: Thèse de doctorat d'Etat. Université de Paris VII (1979)Google Scholar
  16. 16.
    Mebkhout, Z.: Sur le problème de Riemann-Hilbert. Note C.R.A.S., t. 290 (3 Mars 1980)Google Scholar
  17. 17.
    Mebkhout, Z.: Dualité de Poincaré. In: Séminaire sur les singularités. Publications mathématiques de l'Université Paris VII No 7 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. L. Brylinski
    • 1
  • M. Kashiwara
    • 2
  1. 1.Centre de Mathématiques de l'Ecole PolytechniquePalaiseau CedexFrance
  2. 2.R.I.M.S.Kyoto UniversityKyotoJapan

Personalised recommendations