Inventiones mathematicae

, Volume 86, Issue 3, pp 577–601 | Cite as

Théorème de Torelli pour les cubiques de ℙ5

  • Claire Voisin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 0.
    Beauville, A.: Jacobiennes intermédiaires et variétés de Prym. Ann. de l'ENS10, 309–391 (1977)Google Scholar
  2. 1.
    Beauville, A.: Variétés kählériennes dont la première classe de Chern est nulle. J. Diff. Geom.18, 755–782 (1983)Google Scholar
  3. 2.
    Beauville, A., Donagi, R.: The variety of lines of a cubic fourfold. C.R. Acad. Sci. Paris, Ser. 1301, 703–706 (1985)Google Scholar
  4. 3.
    Clemens, H., Griffiths, P.: The intermediate Jacobienne of the cubic three fold. Ann. Math.95, 281–356 (1972)Google Scholar
  5. 4.
    Conte, A., Murre, J.P.: The Hodge conjecture for fourfolds admitting a covering by rational curves. Math. Ann.238, 79–88 (1978)Google Scholar
  6. 5.
    Donagi, R.: Generic Torelli for projective hypersurfaces. Comp. Math. Vol.50, 325–353 (1983)Google Scholar
  7. 6.
    Carlson, J., Griffiths, P.: Infinitestimal variation of Hodge structure and the global Torelli problem: Dans «journées de géométrie algébrique d'Angers (1979)Google Scholar
  8. 7.
    Griffiths, P., Harris, J.: Infinitesimal variation of Hodge structure, (II). Comp. Math.50, 207–265 (1983)Google Scholar
  9. 8.
    Griffiths, P.: Periods of certain rational integrals I, II. Ann. Math.90, 460–541 (1969)Google Scholar
  10. 9.
    Griffiths, P.: Periods of integrals on algebraic manifolds III. Publ. IHES38, 125–179 (1970)Google Scholar
  11. 10.
    Griffiths, P., Schmid, W.: Recent developments in Hodge theory: A discussion of techniques and results: Dans discrete subgroups of Lie groups. Oxford Univ. Press (1973)Google Scholar
  12. 11.
    Friedman, R.: The period map at the boundary of moduli: dans Topics in transcendental algebraic geometry. Ann. Math. Stud.106, 183–208 (1984)Google Scholar
  13. 12.
    Friedman, R.: A new proof of the Torelli theorem forK3 surfaces. Ann. Math.120, 237–269 (1984)Google Scholar
  14. 13.
    Peters, C., Steenbrink, J.: Infinitesimal variation of Hodge structure and the global Torelli problem for projective hypersurfaces, Dans classification of algebraic and analytic manifolds: Boston: Birkhäuser (1983), Katata symposiumGoogle Scholar
  15. 14.
    Mumford, D.: Theta characteristic of an algebraic curve. Ann. l'ENS4, 181–192 (1971)Google Scholar
  16. 15.
    Tjurin, A.: On the Fano surface of a non-singular cubic in ℙ4. Math. USSR lzv.4, no 6 (1970)Google Scholar
  17. 16.
    Tjurin, A.: Intersections of quadrics. Russ. Math. Surv.30, 51–105 (1975)Google Scholar
  18. 17.
    Séminaire de géométrie, Palaiseau 81–82, périodes et modules des surfacesK3. Astérisque126, 1985Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Claire Voisin
    • 1
  1. 1.Centre d'Orsay, MathematiquesUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations