Inventiones mathematicae

, Volume 86, Issue 3, pp 553–562

Support varieties for restricted lie algebras

  • Eric M. Friedlander
  • Brian J. Parshall
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H., Jantzen, J.: Cohomology of induced representations of algebraic groups. Math. Ann.269, 487–525 (1984)Google Scholar
  2. 2.
    Avrunin, G., Scott, L.: Quillen stratification for modules. Invent. math.66, 277–286 (1982)Google Scholar
  3. 3.
    Carlson, J.: The variety of an indecomposable module is connected. Invent. math.77, 291–299 (1984)Google Scholar
  4. 4.
    Cline, E., Parshall, B., Scott, L.: Cohomology, hyperalgebras, and representations. J. Algebra63, 98–123 (1980)Google Scholar
  5. 5.
    Cline, E., Parshall, B., Scott, L.: A Mackey imprimitivity theory for algebraic groups. Math. Z.182, 447–471 (1983)Google Scholar
  6. 6.
    Cline, E., Parshall, B., Scott, L.: On injective modules for infinitesimal, algebraic groups, I. J. London Math. Soc.31, 277–291 (1985)Google Scholar
  7. 7.
    Friedlander, E., Parshall, B.: Geometry ofp-unipotent Lie algebras J. Algebra (in press) (1986)Google Scholar
  8. 8.
    Friedlander, E., Parshall, B.: Cohomology of infinitesimal and discrete groups. Math. Ann.273, 353–374 (1986)Google Scholar
  9. 9.
    Hochschild, G.: Cohomology of restricted Lie algebras. Am. J. Math.76, 555–580 (1954)Google Scholar
  10. 10.
    Jantzen, J.: Kohomologie vonp-Lie-Algebren und nilpotente Elemente. PreprintGoogle Scholar
  11. 11.
    van der Kallen, J.: Infinitesimally central extensions, of Spin7 in characteristic 2. J. Pure Appl. Algebra14, 39–49 (1979)Google Scholar
  12. 12.
    Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel Lecture Notes in Math., vol. 946. Berlin-Heidelberg-New York: Springer 1982Google Scholar
  13. 13.
    Steinberg, R.: Lectures on Chevalley Groups, Yale University Lecture Notes in Math., 1967Google Scholar
  14. 14.
    Veldkamp, F.: The center of the universal enveloping algebra of a Lie algebra in characteristicp. Ann. Scient. Ec. Norm. Sup.5, 217–240 (1972)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Eric M. Friedlander
    • 1
  • Brian J. Parshall
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations