Inventiones mathematicae

, Volume 86, Issue 3, pp 553–562 | Cite as

Support varieties for restricted lie algebras

  • Eric M. Friedlander
  • Brian J. Parshall


Support Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, H., Jantzen, J.: Cohomology of induced representations of algebraic groups. Math. Ann.269, 487–525 (1984)Google Scholar
  2. 2.
    Avrunin, G., Scott, L.: Quillen stratification for modules. Invent. math.66, 277–286 (1982)Google Scholar
  3. 3.
    Carlson, J.: The variety of an indecomposable module is connected. Invent. math.77, 291–299 (1984)Google Scholar
  4. 4.
    Cline, E., Parshall, B., Scott, L.: Cohomology, hyperalgebras, and representations. J. Algebra63, 98–123 (1980)Google Scholar
  5. 5.
    Cline, E., Parshall, B., Scott, L.: A Mackey imprimitivity theory for algebraic groups. Math. Z.182, 447–471 (1983)Google Scholar
  6. 6.
    Cline, E., Parshall, B., Scott, L.: On injective modules for infinitesimal, algebraic groups, I. J. London Math. Soc.31, 277–291 (1985)Google Scholar
  7. 7.
    Friedlander, E., Parshall, B.: Geometry ofp-unipotent Lie algebras J. Algebra (in press) (1986)Google Scholar
  8. 8.
    Friedlander, E., Parshall, B.: Cohomology of infinitesimal and discrete groups. Math. Ann.273, 353–374 (1986)Google Scholar
  9. 9.
    Hochschild, G.: Cohomology of restricted Lie algebras. Am. J. Math.76, 555–580 (1954)Google Scholar
  10. 10.
    Jantzen, J.: Kohomologie vonp-Lie-Algebren und nilpotente Elemente. PreprintGoogle Scholar
  11. 11.
    van der Kallen, J.: Infinitesimally central extensions, of Spin7 in characteristic 2. J. Pure Appl. Algebra14, 39–49 (1979)Google Scholar
  12. 12.
    Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel Lecture Notes in Math., vol. 946. Berlin-Heidelberg-New York: Springer 1982Google Scholar
  13. 13.
    Steinberg, R.: Lectures on Chevalley Groups, Yale University Lecture Notes in Math., 1967Google Scholar
  14. 14.
    Veldkamp, F.: The center of the universal enveloping algebra of a Lie algebra in characteristicp. Ann. Scient. Ec. Norm. Sup.5, 217–240 (1972)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Eric M. Friedlander
    • 1
  • Brian J. Parshall
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations