Inventiones mathematicae

, Volume 87, Issue 3, pp 495–515

Existence, decomposition, and limits of certain Weierstrass points

  • David Eisenbud
  • Joe Harris
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbarello, E.: Weierstrass points and moduli of curves. Compos. Math.29, 325–342 (1974)Google Scholar
  2. Buchweitz, R.-O.: On Zariski's criterion for equisingularity and non-smoothable monomial curves. Preprint 1980Google Scholar
  3. Diaz, S.: Tangent spaces in moduli via deformations with applications to Weierstrass points. Duke J. Math.51, 905–922 (1984a)Google Scholar
  4. Diaz, S.: Moduli of curves with two exceptional Weierstrass points. J. Differ. Geom.20, 471–478 (1984b)Google Scholar
  5. Diaz, S.: Exceptional Weierstrass points and the divisor on moduli space that they define. Thesis, Brown Univ. 1982. Mem. Am. Math. Soc.56, 327 (1985)Google Scholar
  6. Diaz, S.: Deformations of exceptional Weierstrass Points. Proc. Am. Math. Soc.96, 7–10 (1986)Google Scholar
  7. Eisenbud, D., Harris, J.: Divisors on general curves and cuspidal rational curves. Invent. math.74, 371–418 (1983)Google Scholar
  8. Eisenbud, D., Harris, J.: Limit linear series: Basic theory. Invent. math.85, 337–371 (1986)Google Scholar
  9. Eisenbud, D., Harris, J.: Recent progress in the study of Weierstrass points. Conf. Proceedings, Rome 1984. Lect. Notes Math. (to appear)Google Scholar
  10. Eisenbud, D., Harris, J.: The monodromy of Weierstrass points (to appear)Google Scholar
  11. Eisenbud, D., Harris, J.: When ramification points meet. Invent. math.87, 485–493 (1987)Google Scholar
  12. Griffiths, P.A., Harris, J.: Principles of Algebraic Geometry. John Wiley and Sons, New York, 1978Google Scholar
  13. Haure, M.: Recherches sur les points de Weierstrass d'une coube plane algèbrique. Ann. de l'Ecole Normale13, 115–150 (1896)Google Scholar
  14. Hensel, K., Landsberg, G.: Theorie der algebraischen Funktionen einer Variablen. Repr. by Chelsea, New York, 1965 (1902)Google Scholar
  15. Hurwitz, A.: Über algebraischer Gebilde mit eindeutigen Transformationen in sich. Math. Ann.41, 403–442 (1893)Google Scholar
  16. Knebl, H.: Ebene algebraische Kurven vom Typp, q. Manuscr. Math.49, 165–175 (1984)Google Scholar
  17. Kuribayashi, A., Komiya, K.: On Weierstrass points of non-hyperelliptic compact Riemann surfaces of genus three. Hiroshima Math. J.7, 743–768 (1977)Google Scholar
  18. Laufer, H.: On generalized Weierstrass points and rings with no radically principle prime ideals. In: Riemann surfaces and related topics, ed. Kra, I., Maskit, B. (eds.). Annals of Math. Studies, vol. 97. Princeton: Princeton U. Press, 1981Google Scholar
  19. Lax, R.: Weierstrass points on the universal curve. Math. Ann.216, 35–42 (1975)Google Scholar
  20. Lax, R.: Gap sequences and moduli in genus4. Math. Z.175, 67–75 (1980)Google Scholar
  21. Littlewood, D.E.: The theory of group characters, (second ed.). Oxford: Oxford University Press, 1950Google Scholar
  22. Lugert, E.: Weierstrasspunkte kompakter Riemann'scher Flächen vom Geschlecht 3. Thesis, Universität Erlangen-Nürnberg, 1981Google Scholar
  23. Pinkham, H.: Deformations of algebraic varieties. Astérisque20 (1974)Google Scholar
  24. Rim, D.S., Vittulli, M.: Weierstrass points and monomial curves. J. Algebra 454–476 (1977)Google Scholar
  25. Schreyer, F.O.: Syzygies of curves with special pencils. Thesis, Brandeis Univ. 1983. Math. Ann.275, 105–137 (1986)Google Scholar
  26. Szpiro, L.: Propriétés numeriques du Faisceaux dualisant relative. Astérisque 86, 44–78 (1981)Google Scholar
  27. Vermeulen, A.M.: Weierstrass points of weight two on curves of genus three. Thesis, Amsterdam University, 1983Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • David Eisenbud
    • 1
  • Joe Harris
    • 2
  1. 1.Brandeis UniversityWalthamUSA
  2. 2.Brown UniversityProvidenceUSA

Personalised recommendations