Advertisement

Inventiones mathematicae

, Volume 66, Issue 3, pp 415–459 | Cite as

Kummer's criterion for the special values of HeckeL-functions of imaginary quadratic fields and congruences among cusp forms

  • Haruzo Hida
Article

Keywords

Cusp Form Quadratic Field Imaginary Quadratic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Commutative Algebra. Paris: Hermann 1972Google Scholar
  2. 2.
    Brumer, A.: On the units of algebraic number fields. Matematika,14, 121–124 (1967)Google Scholar
  3. 3.
    Coates, J., Wiles, A.: Kummer's criterion for Hurwitz numbers. In: Proc. of Int. Symp. on Alg. Number Theory, pp. 9–22. Kyoto 1976Google Scholar
  4. 4.
    Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers 1962Google Scholar
  5. 5.
    Damerell, R.M.:L-functions of elliptic curves with complex multiplication I. Acta Arith., 17, 287–301 (1970); II, Acta Arith.,19, 311–317 (1971)Google Scholar
  6. 6.
    Deligne, P.: Formes modulaires et représentationsl-adiques. Sém. Bourbaki, exp. 355, fév. 1969Google Scholar
  7. 7.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular Functions of One Variable II, Lecture Notes in Mathematics, 349, pp. 143–174. Berlin, Heidelberg, New York: Springer-Verlag 1973Google Scholar
  8. 8.
    Deligne, P., Serre, J-P.: Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup. 4e série, t.7, 507–530 (1974)Google Scholar
  9. 9.
    Doi, K., Hida, H.: On a certain congruence of cusp forms and the special values of their Dirichlet series. UnpublishedGoogle Scholar
  10. 10.
    Doi, K., Ohta, M.: On some congruences between cusp forms onΓ 0(N). In: Modular Functions of One Variable V, Lecture Notes in Mathematics, 601, pp. 91–105. Berlin, Heidelberg, New York: Springer-Verlag 1977Google Scholar
  11. 11.
    Hida, H.: On abelian varieties with complex multiplication as factors of the jacobians of Shimura curves. Amer. J. Math.103, 727–776 (1981)Google Scholar
  12. 12.
    Hida, H.: Congruences of cusp forms and special values of their zeta functions. Invent. Math.63, 225–261 (1981)Google Scholar
  13. 13.
    Hida, H.: On congruence divisors of cusp forms as factors of the special values of their zeta functions. Invent. Math.64, 221–262 (1981)Google Scholar
  14. 14.
    Iwasawa, K.: Lectures onp-adicL-functions. Annals of Mathematics Studies, 74, Princeton University Press 1972Google Scholar
  15. 15.
    Koike, M.: A note on modular forms modp. Proc. Japan Acad. Ser. A,55, 313–315 (1979)Google Scholar
  16. 16.
    Mazur, B.: Rational isogenies of prime degree. Invent. Math.44, 129–162 (1978)Google Scholar
  17. 17.
    Miyake, T.: On automorphic forms onGL 2 and Hecke operators. Ann. of Math.94, 174–189 (1971)Google Scholar
  18. 18.
    Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. Math. I.H.E.S.21, 5–128 (1964)Google Scholar
  19. 19.
    Ohta, M.: The representation of Galois group attached to certain finite group schemes, and its application to Shimura's theory. In: Proc. of Int. Symp. on Alg. Number Theory, Kyoto, pp. 149–156, 1976Google Scholar
  20. 20.
    Raynaud, M.: Schémas en groupes de type (p,...,p). Bull. Soc. Math. France102, 241–280 (1974)Google Scholar
  21. 21.
    Ribet, K.A.: A modular construction of unramifiedp-extensions ofQ(μ p). Invent. Math.34, 151–162 (1976)Google Scholar
  22. 22.
    Ribet, K.A.: Galois representations attached to eigenforms with Nebentypes. In: Modular Functions of One Variable V. Lecture Notes in Mathematics, 601, pp. 18–52. Berlin, Heidelberg, New York: Springer-Verlag 1977Google Scholar
  23. 23.
    Robert, G.: Nombres de Hurwitz et unités elliptiques. Ann. Sci. École Norm. Sup., 4e-série, t.11, 297–389 (1978)Google Scholar
  24. 24.
    Serre, J-P.: Abelianl-Adic Representations and Elliptic Curves. W.A. Benjamin, Inc. 1968Google Scholar
  25. 25.
    Serre, J-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492–517 (1968)Google Scholar
  26. 26.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton University Press 1971Google Scholar
  27. 27.
    Shimura, G.: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J.43, 199–208 (1971)Google Scholar
  28. 28.
    Shimura, G.: Class field over real quadratic fields and Hecke operators. Ann. of Math.95, 130–190 (1972)Google Scholar
  29. 29.
    Shimura, G.: On the factors of the jacobian variety of a modular function field. J. Math. Soc. Japan25, 523–544 (1973)Google Scholar
  30. 30.
    Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc.31, 79–98 (1975)Google Scholar
  31. 31.
    Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Application to Number Theory. Publ. Math. Soc. Japan, No. 6, 1961Google Scholar
  32. 32.
    Sturm, J.: Special values of zeta functions, and Eisenstein series of half integral weight. Amer. J. Math.102, 219–240 (1980)Google Scholar
  33. 33.
    Tate, J.:p-Divisible groups. In: Proceedings of a Conference on Local Fields. Driebergen, 1966, pp. 158–183. Berlin, Heidelberg, New York: Springer-Verlag 1967Google Scholar
  34. 34.
    Weil, A.: On a certain type of characters of the idèle class group of an algebraic number field. In: Proc. Symp. on Algebraic Number Theory, Tokyo-Nikko, pp. 1–7, 1955Google Scholar
  35. 35.
    Wiles, A.: Modular curves and the class group ofQ(ζ p). Invent. Math.58, 1–35 (1980)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Haruzo Hida
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations