Inventiones mathematicae

, Volume 66, Issue 3, pp 415–459 | Cite as

Kummer's criterion for the special values of HeckeL-functions of imaginary quadratic fields and congruences among cusp forms

  • Haruzo Hida
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Commutative Algebra. Paris: Hermann 1972Google Scholar
  2. 2.
    Brumer, A.: On the units of algebraic number fields. Matematika,14, 121–124 (1967)Google Scholar
  3. 3.
    Coates, J., Wiles, A.: Kummer's criterion for Hurwitz numbers. In: Proc. of Int. Symp. on Alg. Number Theory, pp. 9–22. Kyoto 1976Google Scholar
  4. 4.
    Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers 1962Google Scholar
  5. 5.
    Damerell, R.M.:L-functions of elliptic curves with complex multiplication I. Acta Arith., 17, 287–301 (1970); II, Acta Arith.,19, 311–317 (1971)Google Scholar
  6. 6.
    Deligne, P.: Formes modulaires et représentationsl-adiques. Sém. Bourbaki, exp. 355, fév. 1969Google Scholar
  7. 7.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular Functions of One Variable II, Lecture Notes in Mathematics, 349, pp. 143–174. Berlin, Heidelberg, New York: Springer-Verlag 1973Google Scholar
  8. 8.
    Deligne, P., Serre, J-P.: Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup. 4e série, t.7, 507–530 (1974)Google Scholar
  9. 9.
    Doi, K., Hida, H.: On a certain congruence of cusp forms and the special values of their Dirichlet series. UnpublishedGoogle Scholar
  10. 10.
    Doi, K., Ohta, M.: On some congruences between cusp forms onΓ 0(N). In: Modular Functions of One Variable V, Lecture Notes in Mathematics, 601, pp. 91–105. Berlin, Heidelberg, New York: Springer-Verlag 1977Google Scholar
  11. 11.
    Hida, H.: On abelian varieties with complex multiplication as factors of the jacobians of Shimura curves. Amer. J. Math.103, 727–776 (1981)Google Scholar
  12. 12.
    Hida, H.: Congruences of cusp forms and special values of their zeta functions. Invent. Math.63, 225–261 (1981)Google Scholar
  13. 13.
    Hida, H.: On congruence divisors of cusp forms as factors of the special values of their zeta functions. Invent. Math.64, 221–262 (1981)Google Scholar
  14. 14.
    Iwasawa, K.: Lectures onp-adicL-functions. Annals of Mathematics Studies, 74, Princeton University Press 1972Google Scholar
  15. 15.
    Koike, M.: A note on modular forms modp. Proc. Japan Acad. Ser. A,55, 313–315 (1979)Google Scholar
  16. 16.
    Mazur, B.: Rational isogenies of prime degree. Invent. Math.44, 129–162 (1978)Google Scholar
  17. 17.
    Miyake, T.: On automorphic forms onGL 2 and Hecke operators. Ann. of Math.94, 174–189 (1971)Google Scholar
  18. 18.
    Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. Math. I.H.E.S.21, 5–128 (1964)Google Scholar
  19. 19.
    Ohta, M.: The representation of Galois group attached to certain finite group schemes, and its application to Shimura's theory. In: Proc. of Int. Symp. on Alg. Number Theory, Kyoto, pp. 149–156, 1976Google Scholar
  20. 20.
    Raynaud, M.: Schémas en groupes de type (p,...,p). Bull. Soc. Math. France102, 241–280 (1974)Google Scholar
  21. 21.
    Ribet, K.A.: A modular construction of unramifiedp-extensions ofQ(μ p). Invent. Math.34, 151–162 (1976)Google Scholar
  22. 22.
    Ribet, K.A.: Galois representations attached to eigenforms with Nebentypes. In: Modular Functions of One Variable V. Lecture Notes in Mathematics, 601, pp. 18–52. Berlin, Heidelberg, New York: Springer-Verlag 1977Google Scholar
  23. 23.
    Robert, G.: Nombres de Hurwitz et unités elliptiques. Ann. Sci. École Norm. Sup., 4e-série, t.11, 297–389 (1978)Google Scholar
  24. 24.
    Serre, J-P.: Abelianl-Adic Representations and Elliptic Curves. W.A. Benjamin, Inc. 1968Google Scholar
  25. 25.
    Serre, J-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492–517 (1968)Google Scholar
  26. 26.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton University Press 1971Google Scholar
  27. 27.
    Shimura, G.: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J.43, 199–208 (1971)Google Scholar
  28. 28.
    Shimura, G.: Class field over real quadratic fields and Hecke operators. Ann. of Math.95, 130–190 (1972)Google Scholar
  29. 29.
    Shimura, G.: On the factors of the jacobian variety of a modular function field. J. Math. Soc. Japan25, 523–544 (1973)Google Scholar
  30. 30.
    Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc.31, 79–98 (1975)Google Scholar
  31. 31.
    Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Application to Number Theory. Publ. Math. Soc. Japan, No. 6, 1961Google Scholar
  32. 32.
    Sturm, J.: Special values of zeta functions, and Eisenstein series of half integral weight. Amer. J. Math.102, 219–240 (1980)Google Scholar
  33. 33.
    Tate, J.:p-Divisible groups. In: Proceedings of a Conference on Local Fields. Driebergen, 1966, pp. 158–183. Berlin, Heidelberg, New York: Springer-Verlag 1967Google Scholar
  34. 34.
    Weil, A.: On a certain type of characters of the idèle class group of an algebraic number field. In: Proc. Symp. on Algebraic Number Theory, Tokyo-Nikko, pp. 1–7, 1955Google Scholar
  35. 35.
    Wiles, A.: Modular curves and the class group ofQ(ζ p). Invent. Math.58, 1–35 (1980)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Haruzo Hida
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsHokkaido UniversitySapporoJapan

Personalised recommendations