Inventiones mathematicae

, Volume 63, Issue 1, pp 159–179 | Cite as

Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula

  • Hiroaki Terao
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brieskorn, E.: Sur les groupes de tresses (d'après V.I. Arnold), Séminaire Bourbaki 24e année 1971/72. Springer Lecture Notes No. 317, Berlin-Heidelberg-New York: Springer 1973Google Scholar
  2. 2.
    Coxeter, H.S.M.: The product of generators of a finite group generated by reflections. Duke Math. J.18, 765–782 (1951)Google Scholar
  3. 3.
    Deligne, P.: Théorie de Hodge II. Publ. I.H.E.S.40, 5–57 (1972)Google Scholar
  4. 4.
    Matsumura, H.: Commutative Algebra, New York: Benjamin 1970Google Scholar
  5. 5.
    Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Inventiones math.56, 167–189 (1980)Google Scholar
  6. 6.
    Orlik, P., Solomon, L.: Unitary reflection groups and cohomology. Inventiones math.59, 77–94 (1980)Google Scholar
  7. 7.
    Saito, K.: On the uniformization of complements of discriminant loci. Symp. in Pure Math., Williams College, 1975, Providence: AMS 1977Google Scholar
  8. 8.
    Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math.27, 265–291 (1980)Google Scholar
  9. 9.
    Serre, J.P.: Algèbre locale multiplicités. Springer Lecture Notes No. 11, Berlin-Heidelberg-New York: Springer 1965Google Scholar
  10. 10.
    Shepherd, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math.6, 274–304 (1954)Google Scholar
  11. 11.
    Terao, H.: Arrangements of hyperplanes and their freeness I. J. Fac. Sci. Univ. Tokyo Sect. IA Math.27, 293–312 (1980)Google Scholar
  12. 12.
    Terao, H.: Arrangements of hyperplanes and their freeness II—the Coxeter equality. J. Fac. Sci. Univ. Tokyo Sect. IA Math.27, 313–320 (1980)Google Scholar
  13. 13.
    Terao, H.: Free arrangements and unitary reflection groups. Proc. Japan Acad. Ser. A,56, 389–392 (1980)Google Scholar
  14. 14.
    Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Memoirs of the Amer. Math. Soc. No. 154, Providence: AMS 1975Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Hiroaki Terao
    • 1
  1. 1.Department of MathematicsInternational Christian UniversityMitaka, TokyoJapan

Personalised recommendations