Inventiones mathematicae

, Volume 69, Issue 1, pp 109–153

The blocks of finite general linear and unitary groups

  • Paul Fong
  • Bhama Srinivasan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alperin, J.: Large abelian subgroups ofp-groups. Trans. Amer. Math. Soc.117, 10–20 (1965)Google Scholar
  2. 2.
    Brauer, R.: Zur Darstellungstheorie der Gruppen endlicher Ordnung. (I) Math. Z.63, 406–444 (1956); (II) Math. Z.72, 25–46 (1959)Google Scholar
  3. 3.
    Brauer, R.: On blocks and sections. (I) Amer. J. Math.89, 1115–1136 (1967); (II) Amer. J. Math. 90, 895–925 (1968)Google Scholar
  4. 4.
    Brauer, R.: On the structure of blocks of characters of finite groups, Proc. Second Internat. Conf. Theory of Groups, Canberra 1973, pp. 103–130Google Scholar
  5. 5.
    Curtis, C.W.: Reduction theorems for characters of finite groups of Lie type. J. Math. Soc. Japan27, 666–688 (1975)Google Scholar
  6. 6.
    Dade, E.C.: Blocks with cyclic defect groups. Annals Math.84, 20–48 (1966)Google Scholar
  7. 7.
    Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Annals Math.103, 103–161 (1976)Google Scholar
  8. 8.
    Farahat, H.: On the representations of the symmetric group. Proc. London Math. Soc.4, 303–316 (1954)Google Scholar
  9. 9.
    Feit, W.: The representation theory of finite groups. North Holland 1982Google Scholar
  10. 10.
    Green, J.A.: The characters of the finite general linear groups. Trans. Amer. Math. Soc.80, 402–447 (1955)Google Scholar
  11. 11.
    Hotta, R., Springer, T.A.: A specialization theorem for certain Weyl group representations. Invent. Math.41, 113–127 (1977)Google Scholar
  12. 12.
    Ito, N.: On the degrees of irreducible representations of a finite group. Nagoya Math. J.3, 5–6 (1951)Google Scholar
  13. 13.
    James, G.: The representation theory of the symmetric group. Lecture Notes in Math., Vol. 682. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  14. 14.
    James, G., Kerber, A.: The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, Vol. 16. Addison-Wesley 1981Google Scholar
  15. 15.
    Lusztig, G.: On the finiteness of the number of unipotent classes. Invent. Math.34, 201–213 (1976)Google Scholar
  16. 16.
    Lusztig, G.: Representations of finite classical groups. Invent. Math.43, 125–175 (1977)Google Scholar
  17. 17.
    Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups. J. Algebra49, 167–171 (1977)Google Scholar
  18. 18.
    Nakayama, T.: On some modular properties of irreducible representations of a symmetric group. (I) Jap. J. Math.17, 89–108 (1940); (II) Jap. J. Math.17, 411–423 (1941)Google Scholar
  19. 19.
    Olsson, J.: On the blocks ofGL(n, q). (I) Trans. Amer. Math. Soc.222, 143–156 (1976)Google Scholar
  20. 20.
    Reynolds, W.: Blocks and normal subgroups of finite groups. Nagoya Math. J.22, 15–32 (1963)Google Scholar
  21. 21.
    Srinivasan, B.: Representations of finite chevalley groups. Lecture Notes in Math. Vol. 764. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  22. 22.
    Wall, G.E.: On the conjugacy classes in the unitary, symplectic, and orthogonal groups. J. Australian Math. Soc.3, 1–62 (1963)Google Scholar
  23. 23.
    Weir, A.: Sylowp-subgroups of the classical groups over finite fields with characteristic prime top. Proc. Amer. Math. Soc.6, 529–533 (1955)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Paul Fong
    • 1
  • Bhama Srinivasan
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations