Inventiones mathematicae

, Volume 69, Issue 1, pp 1–102 | Cite as

The friendly giant

  • Robert L. GriessJr.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alperin, J., Gorenstein, D.: A vanishing theorem for cohomology. Proc. Amer. Math. Soc.32, 87–88 (1972)Google Scholar
  2. 2.
    Artin, E.: Geometric Algebra. New York:Interscience 1957Google Scholar
  3. 3.
    Aschbacher, M.: private communicationGoogle Scholar
  4. 4.
    Aschbacher, M., Seitz, G.: On groups with a standard component of known type. Osaka J. Math.13, 439–482 (1976)Google Scholar
  5. 5.
    Borel, A.: Seminar on algebraic groups and related finite groups. Lecture Notes in Mathematics, vol. 131. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  6. 6.
    Brauer, R., Nesbitt, C.: On the modular representation of groups of finite order, I, University of Toronto Studies, No. 4, 21 pp. (1937)Google Scholar
  7. 7.
    Burgoyne, N., Fong, P.: Schur multipliers of the Mathieu groups. Nagoya Math. J.27, 733–745 (1966); Correction, ibid31, 297–304 (1968)Google Scholar
  8. 8.
    Burgoyne, N., Griess, R., Lyons, R.: Maximal subgroups and automorphisms of Chevalley groups. Pacific J. of Math.71, 365–403 (1977)Google Scholar
  9. 9.
    Carter, R.: Simple groups of Lie type. New York: Wiley — Interscience 1972Google Scholar
  10. 10.
    Conway, J.: A group of order 8, 315, 553, 613, 086, 720, 000. Bull. L.M.S.1, 79–88 (1969)Google Scholar
  11. 11.
    Conway, J.: Three lectures on exceptional groups in Higman-Powell, pp. 215–247. Finite simple groups. London: Academic Press 1971Google Scholar
  12. 12.
    Conway, J., Guy, M., Patterson, N.: The characters and conjugacy classes of ·0, ·1, ·2, ·3 and Suz. unpublishedGoogle Scholar
  13. 13.
    Conway, J., Norton, S.: Monstrous moonshine. Bull. London Math. Soc.11, 303–339 (1979)Google Scholar
  14. 14.
    Curran, P.: Fixed point free action on a class of abelian groups. Proc. Amer. Math. Soc.57, 189–193 (1976)Google Scholar
  15. 15.
    Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebra. New York: Interscience 1962Google Scholar
  16. 16.
    Dempwolf, U.: On extensions of an elementary abelian group of order 25 byGL(5, 2), Rendiconti del Seminario Matematico della Universita di Padova48, 359–364 (1973)Google Scholar
  17. 17.
    Dickson, L.E.: Linear groups. New York: Dover 1968Google Scholar
  18. 18.
    Dieudonne, J.: La geometrie des groups classiques. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  19. 19.
    Finkelstein, L., Solomon, R.: Standard components of typeM 12 and.3. Osaka J. Math.16, 759–774 (1979)Google Scholar
  20. 20.
    Fischer, B.: Private correspondence. 1971Google Scholar
  21. 21.
    Fischer, B.: Privately circulated note. 1973Google Scholar
  22. 22.
    Fischer, B., Livingstone, D., Thorne, M.P.: The character table ofF 1. unpublishedGoogle Scholar
  23. 23.
    Fong, P.: On decomposition numbers ofJ 1 andR(q), Instituto Nazionale di Alta Mathematica, Symposia Mathematica, volume XII, 415–422 (1973)Google Scholar
  24. 24.
    Gilman, R., Griess, R.: A characterization of finite groups of Lie type in characteristic 2. submitted to J. of AlgebraGoogle Scholar
  25. 25.
    Glauberman, G.: Central elements in corefree groups. J. of Algebra4, 403–420 (1966)Google Scholar
  26. 26.
    Goldschmidt, D.: 2-fusion in finite groups. Annals of Math.99, 70–117 (1974)Google Scholar
  27. 27.
    Gorenstein, D.: Finite Groups. New York: Harper and Row 1968Google Scholar
  28. 28.
    Gorenstein, D., Walter, J.: The characterization of finite groups with dihedral Sylow 2-subgroups, I, II and III. J. of Algebra2, 85–151; 218–270; 354–293 (1965)Google Scholar
  29. 29.
    Griess, R.: A construction ofF 1 as automorphisms of a 196,883 dimensional algebra. Proc. Natl. Acad. Sci. USA78, 689–691 (1981)Google Scholar
  30. 30.
    Griess, R.: A subgroup of order 215|GL(5,2)| inE 8(ℂ), the Dempwolff group and Aut (D 8D 8D 8). J. of Algebra40, 271–279 (1976)Google Scholar
  31. 31.
    Griess, R.: Automorphisms of extra special groups and nonvanishing degrees 2 cohomology. Pacific J. of Math.28, 403–422 (1973)Google Scholar
  32. 32.
    Griess, R.: Schur multipliers of finite simple groups of Lie type. Trans. Amer. Math. Soc.183, 355–421 (1973)Google Scholar
  33. 33.
    Griess, R.: Schur multipliers of some sporadic simple groups. J. of Algebra32, 445–466 (1974)Google Scholar
  34. 34.
    Griess, R.: Schur multipliers of the known finite simple groups I. Bull. Amer. Math. Soc.78, 78–71 (1972)Google Scholar
  35. 35.
    Griess, R.: Schur multipliers of the known finite simple groups II, in the Santa Cruz Conference on Finite Groups, edited by B. Cooperstein and G. MasonGoogle Scholar
  36. 36.
    Griess, R.: Structure of the Friendly Giant. In preparationGoogle Scholar
  37. 37.
    Griess, R.: Structure of the monster simple group. Proceedings of the Conference in Finite Groups. New York: Academic Press 1976Google Scholar
  38. 38.
    Griess, R., Solomon, R.: Finite groups with unbalancing 2-components of {L 3(4),He}-type. J. Algebra60, 92–125 (1979)Google Scholar
  39. 39.
    Gruenberg, K.: Cohomological topics in group theory. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  40. 40.
    Harada, K.: On the simple groupF of order 2143656. 7. 11. 19. Proc. of a Conference on Finite Groups, pp. 119–276Google Scholar
  41. 41.
    Held, D.: The simple groups related toM 24. J. Algebra13, 253–296 (1969)Google Scholar
  42. 42.
    Jacobson, N.: The theory of rings. Amer. Math. Soc., Providence 1943Google Scholar
  43. 43.
    Janko, Z.: A new finite simple group with abelian Sylow 2-subgroups and its characterization. J. of Algebra3, 147–186 (1966)Google Scholar
  44. 44.
    Janko, Z.: Inst. Natl. Alta Math. Symposia Math. Odensi Gubbio,1, 25–64 (1968)Google Scholar
  45. 45.
    Jordan, C.: Traité des substitutions et des èquations algébriques. Paris: Gautheirs-Villars 1870Google Scholar
  46. 46.
    Kusefoglu, A.: Cohomology of finite orthogonal groups. I: J. of Algebra56, 207–220; II: J. of Algebra67, 88–109 (1980)Google Scholar
  47. 47.
    Kusefoglu, A.: Thesis, University of Michigan 1976Google Scholar
  48. 48.
    Lang, S.: Algebraic groups over finite fields. Amer. J. of Math.78, 555–563 (1956)Google Scholar
  49. 49.
    Leech, J.: Notes on sphere packings. Can. J. Math.19, 251–267 (1967)Google Scholar
  50. 50.
    Leech, J.: Some sphere packings in higher space. Can. J. Math.16, 657–682 (1964)Google Scholar
  51. 51.
    Leon, J.S., Sims, C.C.: The existence and uniqueness of a simple group generated by {3, 4}-transpositions. Bull. Amer. Math. Soc.83, 1039–1040 (1977)Google Scholar
  52. 52.
    McKay, J., Wales, D.: The multipliers of the simple groups of order 604,800, and 50,232,960. J. of Algebra17, 262–272 (1971)Google Scholar
  53. 53.
    Norton, S.: Thesis, University of Cambridge 1975Google Scholar
  54. 54.
    Norton, S.: Transposition algebras and the groupF 24, to appearGoogle Scholar
  55. 55.
    Niemeyer, H.V.: Definite Quadratische Formen der Diskriminante 1 und Dimension 24. Doctoral Dissertation. Göttingen, 1968Google Scholar
  56. 56.
    Patterson, N.J.: On Conway's group .0 and some subgroups. Thesis, University of Cambridge, 1972Google Scholar
  57. 57.
    Pollatsek, H.K.: Cohomology groups of some linear groups over fields of characteristics 2, Ill. J. of Math.15, 393–417 (1971)Google Scholar
  58. 58.
    Robinson, D.: The vanishing of certain homology and cohomology groups. J. of Pure and Applied Algebra7, 145–167 (1976)Google Scholar
  59. 59.
    Ronan, M.A., Smith, S.D.: 2-local geometries for some sporadic groups. The Santa Cruz Conference on Finite Groups, edited by B. Cooperstein and G. Mason. Amer. Math. Soc. Providence, 1980Google Scholar
  60. 60.
    Seitz, G.: Standard subgroups in finite groups. Finite simple groups II, M.J. Collins, (ed.). London: Academic Press 1980Google Scholar
  61. 61.
    Smith, S.: Nonassociative commutative algebras for triple covers of 3-transposition groups. Michigan Math. J.24, 273–287 (1977)Google Scholar
  62. 62.
    Smith, S.: The classification of finite groups with large extraspecial 2-subgroups. The Santa Cruz Conference on Finite Groups, edited by B. Cooperstein and G. Mason. Amer. Math. Soc., Providence, 1980Google Scholar
  63. 63.
    Smith, S.: Large extraspecial subgroups of width 4 and 6. J. of Algebra58, 251–281 (1979)Google Scholar
  64. 64.
    Steinberg, R.: Generators, relations, and coverings of algebraic groups II. to appearGoogle Scholar
  65. 65.
    Steinberg, R.: Lectures on Chevalley groups, lecture notes, Mathematics Department, Yale UniversityGoogle Scholar
  66. 66.
    Steinberg, R.: Representation of algebraic groups. Nagoya Math. J.22, 33–56 (1963)Google Scholar
  67. 67.
    Stroth, G.: Eine Kennzeichnung der Gruppen2 E 6(2n). J. of Algebra35, 534–547 (1975)Google Scholar
  68. 68.
    Suzuki, M.: On a class of doubly transitive groups. Ann. of Math.75, 105–145 (1962)Google Scholar
  69. 69.
    Thompson, J.: A simple subgroup ofE 8(3). Finite Groups, Iwahori, N. (ed.). Japan Society for Promotion of Science, Tokyo, 1976Google Scholar
  70. 70.
    Thompson, J.: Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc.74, 383–437 (1968)Google Scholar
  71. 71.
    Thompson, J.: Uniqueness of the Fischer-Griess monster. Bull. London Math. Soc.11, 340–346 (1979)Google Scholar
  72. 72.
    Timmesfeld, F.: Groups generated by root involutions. I, II. J. of Algebra33, 75–135 (1975);35, 367–441 (1975)Google Scholar
  73. 73.
    Timmesfeld, F.: Groups ofGF(2)-type and related problems. Finite Simple Groups II, Collins, M.J. (ed.). London: Academic Press 1980Google Scholar
  74. 74.
    Tood, J.: A representation of the Mathieu groupM 24 as a collineation group. Annali di Mathematica Pura ed Applicata.71, 199–238 (1966)Google Scholar
  75. 75.
    Walter, J.: The characterization of finite groups with abelian Sylow 2-groups. Ann. of Math.89, 405–514 (1969)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Robert L. GriessJr.
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations