Inventiones mathematicae

, Volume 90, Issue 3, pp 451–477 | Cite as

A geometric invariant of discrete groups

  • Robert Bieri
  • Walter D. Neumann
  • Ralph Strebel


Discrete Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B] Brown, K.S.: Trees, valuations, and the Bieri-Neumann-Strebel invariant (Preprint 1986)Google Scholar
  2. [B-G] Bieri, R., Groves, J.R.J.: The geometry of the set of characters induced by valuations. J. Reine Angew. Math.347, 168–195 (1984)Google Scholar
  3. [B-S 1] Bieri, R., Strebel, R.: Valuations and finitely presented metabelian groups. Proc. Lond. Math. Soc. (3)41, 439–464 (1980)Google Scholar
  4. [B-S 2] Bieri, R., Strebel, R.: A geometric invariant for modules over an abelian group. J. Reine Angew. Math.322, 170–189 (1981)Google Scholar
  5. [B-S 3] Bieri, R., Strebel, R.: A geometric invariant for nilpotent-by-abelian-by-finite groups. J. Pure Appl. Algebra25, 1–20 (1982)Google Scholar
  6. [B-S 4] Bieri, R., Strebel, R.: On the existence of finitely generated normal subgroups with infinite cyclic quotients. Arch. Math.36, 401–403 (1981)Google Scholar
  7. [B-Sq] Brin, M.G., Squier, C.C.: Groups of piecewise linear homeomorphisms of the real line. Invent. Math.79, 485–498 (1985)Google Scholar
  8. [F-L] Fried, D., Lee, R.: Realizing group automorphisms. Contemp. Math.36, 427–432 (1985)Google Scholar
  9. [L] Levitt, G.: Geometry and ergodicity of closed 1-forms. Proc. V Escola Geom. Dif. São Paulo 1984, pp. 109–118Google Scholar
  10. [N] Neumann, W.D.: Normal subgroups with infinite cyclic quotient. Math. Sci.4, 143–148 (1979)Google Scholar
  11. [St] Stallings, J.: On fibering certain 3-manifolds. Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N.J.,95–100 (1962)Google Scholar
  12. [S] Strebel, R.: Finitely presented soluble groups. In: Gruenberg, K.W., Roseblade, J.E. (eds.). Group Theory: essays for Philip Hall. Academic Press 1984, pp. 257–314Google Scholar
  13. [T] Thurston, W.P.: A norm on the homology of 3-manifolds. Memoirs of the A.M.S.339 (1986)Google Scholar
  14. [Ti] Tischler, D.: On fibering certain foliated manifolds overS 1. Topology9, 153–154 (1970)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Robert Bieri
    • 1
  • Walter D. Neumann
    • 2
  • Ralph Strebel
    • 3
  1. 1.Fachbereich Mathematik der UniversitätFrankfurtGermany
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA
  3. 3.MathematikETH-ZentrumZürichSwitzerland

Personalised recommendations