Inventiones mathematicae

, Volume 64, Issue 2, pp 203–219

Symmetric functions, conjugacy classes and the flag variety

  • Corrado de Concini
  • Claudio Procesi
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helvetici54, 61–104 (1979)Google Scholar
  2. 2.
    Hotta, R., Shimomura, N.: The fixed point Subvarieties of Unipotent Transformations on Generalized Flag Varieties and the Green Functions, Math. Ann.241, 193–208 (1979)Google Scholar
  3. 3.
    Hotta, R., Springer, T.A.: A Specialization Theorem for certain Weyl Group Representations and an application to Green Polynomials of Unitary Groups. Invent. Math.41, 113–127 (1977)Google Scholar
  4. 4.
    Kazhdan, D., Lusztig, G.: A topological approach to Springer's representations, Adv. in Math. v. 38, n. 2, (1988) 222–228Google Scholar
  5. 5.
    Kleiman, S.L.: Rigorous foundations of Schubert's enumerative calculus. Proc. of Symp. in Pure Math. Vol. XXVIII, Providence 1976Google Scholar
  6. 6.
    Kostant, B.: Lie groups representations on polynomial rings. Amer. J. Math.85, 327–404 (1963)Google Scholar
  7. 7.
    Kraft, H.: Conjugacy Classes and Weyl Group Representations, Proc. Torun Conf. AsterisqueGoogle Scholar
  8. 8.
    Kraft, H., Procesi, C.: Closures of Conjugacy Classes of Matrices are Normal. Invent. Math.53, 227–247 (1979)Google Scholar
  9. 9.
    Macdonald, I.G.: Symmetric functions and Hall polynomials, Oxford Univ. Press 1979Google Scholar
  10. 10.
    Robinson, G. de B.: Representation theory of the symmetric group. University of Toronto Press 1961Google Scholar
  11. 11.
    Slodowy, P.: Four lectures on simple group and singularities. Comm. Math. Inst. Rijksuniv. Utrecht 11-1980Google Scholar
  12. 12.
    Spaltenstein, N.: The fixed point set of a unipotent transformation on the flag manifold. Proc. Kon. Ak. v. Wet79, 452–456 (1976)Google Scholar
  13. 13.
    Spaltenstein, N.: On the fixpoint set of a unipotent element on the variety of Borel subgroups. Topology16, 203–204 (1977)Google Scholar
  14. 14.
    Springer, T.A.: Trigonometrical Sums, Green Functions of Finite Groups and Representations of Weyl Groups. Invent. Math.36, 173–207 (1976)Google Scholar
  15. 15.
    Springer, T.A.: A construction of Representations of Weyl Groups. Invent. Math.44, 279–293 (1978)Google Scholar
  16. 16.
    Steinberg, R.: On the Desingularization of the Unipotent Variety. Invent. Math.36, 209–224 (1976)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Corrado de Concini
    • 1
  • Claudio Procesi
    • 2
  1. 1.Istituto Matematico L. TonelliUniversità di PisaPisaItaly
  2. 2.Istituto Matematico G. CastelnuovoUniversità di RomaI-RomaItaly

Personalised recommendations